Abstract

Drosophila blood cells, called hemocytes, are classified into plasmatocytes, crystal cells, and lamellocytes based on the expression of a few marker genes and cell morphologies, which are inadequate to classify the complete hemocyte repertoire. Here, we used single-cell RNA sequencing (scRNA-seq) to map hemocytes across different inflammatory conditions in larvae. We resolved plasmatocytes into different states based on the expression of genes involved in cell cycle, antimicrobial response, and metabolism together with the identification of intermediate states. Further, we discovered rare subsets within crystal cells and lamellocytes that express fibroblast growth factor (FGF) ligand branchless and receptor breathless, respectively. We demonstrate that these FGF components are required for mediating effective immune responses against parasitoid wasp eggs, highlighting a novel role for FGF signaling in inter-hemocyte crosstalk. Our scRNA-seq analysis reveals the diversity of hemocytes and provides a rich resource of gene expression profiles for a systems-level understanding of their functions.

Data availability

Sequencing data have been deposited in GEO under the accession number GSE146596Elsewhere, data can be visualized at: www.flyrnai.org/scRNA/blood/Data code can accessed at: https://github.com/hbc/A-single-cell-survey-of-Drosophila-blood

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Sudhir Gopal Tattikota

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    For correspondence
    sudhir_gt@hms.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0318-5533
  2. Bumsik Cho

    Department of Life Science, Hanyang University, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
  3. Yifang Liu

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  4. Yanhui Hu

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  5. Victor Barrera

    Biostatistics, Harvard T H Chan Bioinformatics Core, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0590-4634
  6. Michael J Steinbaugh

    Biostatistics, Harvard T H Chan Bioinformatics Core, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2403-2221
  7. Sang-Ho Yoon

    Department of Life Science, Hanyang University, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2611-5554
  8. Aram Comjean

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  9. Fangge Li

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  10. Franz Dervis

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  11. Ruei-Jiun Hung

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  12. Jin-Wu Nam

    Department of Life Science, Hanyang University, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
  13. Shannan Ho Sui

    Biostatistics, Harvard T H Chan Bioinformatics Core, Boston, United States
    Competing interests
    No competing interests declared.
  14. Jiwon Shim

    Department of Life Science, Hanyang University, Seoul, Republic of Korea
    Competing interests
    Jiwon Shim, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2409-1130
  15. Norbert Perrimon

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    For correspondence
    perrimon@receptor.med.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7542-472X

Funding

Samsung Science and Technology Foundation (SSTF-BA1701-15)

  • Jiwon Shim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bruno Lemaître, École Polytechnique Fédérale de Lausanne, Switzerland

Version history

  1. Received: December 30, 2019
  2. Accepted: May 8, 2020
  3. Accepted Manuscript published: May 12, 2020 (version 1)
  4. Version of Record published: May 19, 2020 (version 2)

Copyright

© 2020, Tattikota et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,390
    views
  • 1,117
    downloads
  • 140
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sudhir Gopal Tattikota
  2. Bumsik Cho
  3. Yifang Liu
  4. Yanhui Hu
  5. Victor Barrera
  6. Michael J Steinbaugh
  7. Sang-Ho Yoon
  8. Aram Comjean
  9. Fangge Li
  10. Franz Dervis
  11. Ruei-Jiun Hung
  12. Jin-Wu Nam
  13. Shannan Ho Sui
  14. Jiwon Shim
  15. Norbert Perrimon
(2020)
A single-cell survey of Drosophila blood
eLife 9:e54818.
https://doi.org/10.7554/eLife.54818

Share this article

https://doi.org/10.7554/eLife.54818

Further reading

    1. Developmental Biology
    Phuong-Khanh Nguyen, Louise Y Cheng
    Research Article Updated

    The brain is consisted of diverse neurons arising from a limited number of neural stem cells. Drosophila neural stem cells called neuroblasts (NBs) produces specific neural lineages of various lineage sizes depending on their location in the brain. In the Drosophila visual processing centre - the optic lobes (OLs), medulla NBs derived from the neuroepithelium (NE) give rise to neurons and glia cells of the medulla cortex. The timing and the mechanisms responsible for the cessation of medulla NBs are so far not known. In this study, we show that the termination of medulla NBs during early pupal development is determined by the exhaustion of the NE stem cell pool. Hence, altering NE-NB transition during larval neurogenesis disrupts the timely termination of medulla NBs. Medulla NBs terminate neurogenesis via a combination of apoptosis, terminal symmetric division via Prospero, and a switch to gliogenesis via Glial Cell Missing (Gcm); however, these processes occur independently of each other. We also show that temporal progression of the medulla NBs is mostly not required for their termination. As the Drosophila OL shares a similar mode of division with mammalian neurogenesis, understanding when and how these progenitors cease proliferation during development can have important implications for mammalian brain size determination and regulation of its overall function.

    1. Developmental Biology
    2. Neuroscience
    Amy R Poe, Lucy Zhu ... Matthew S Kayser
    Research Article

    Sleep and feeding patterns lack strong daily rhythms during early life. As diurnal animals mature, feeding is consolidated to the day and sleep to the night. In Drosophila, circadian sleep patterns are initiated with formation of a circuit connecting the central clock to arousal output neurons; emergence of circadian sleep also enables long-term memory (LTM). However, the cues that trigger the development of this clock-arousal circuit are unknown. Here, we identify a role for nutritional status in driving sleep-wake rhythm development in Drosophila larvae. We find that in the 2nd instar larval period (L2), sleep and feeding are spread across the day; these behaviors become organized into daily patterns by the 3rd instar larval stage (L3). Forcing mature (L3) animals to adopt immature (L2) feeding strategies disrupts sleep-wake rhythms and the ability to exhibit LTM. In addition, the development of the clock (DN1a)-arousal (Dh44) circuit itself is influenced by the larval nutritional environment. Finally, we demonstrate that larval arousal Dh44 neurons act through glucose metabolic genes to drive onset of daily sleep-wake rhythms. Together, our data suggest that changes to energetic demands in developing organisms trigger the formation of sleep-circadian circuits and behaviors.