Stimulus-dependent relationships between behavioral choice and sensory neural responses

  1. Daniel Chicharro  Is a corresponding author
  2. Stefano Panzeri
  3. Ralf M Haefner  Is a corresponding author
  1. Italian Institute of Technology, Italy
  2. University of Rochester, United States

Abstract

Understanding perceptual decision-making requires linking sensory neural responses to behavioral choices. In two-choice tasks, activity-choice covariations are commonly quantified with a single measure of choice probability (CP), without characterizing their changes across stimulus levels. We provide theoretical conditions for stimulus dependencies of activity-choice covariations. Assuming a general decision-threshold model, which comprises both feedforward and feedback processing and allows for a stimulus-modulated neural population covariance, we analytically predict a very general and previously unreported stimulus dependence of CPs. We develop new tools, including refined analyses of CPs and generalized linear models with stimulus-choice interactions, which accurately assess the stimulus- or choice-driven signals of each neuron, characterizing stimulus-dependent patterns of choice-related signals. With these tools, we analyze CPs of macaque MT neurons during a motion discrimination task. Our analysis provides preliminary empirical evidence for the promise of studying stimulus dependencies of choice-related signals, encouraging further assessment in wider data sets.

Data availability

No data was collected as part of this study.

The following previously published data sets were used

Article and author information

Author details

  1. Daniel Chicharro

    Center for Neuroscience and Cognitive Systems, Italian Institute of Technology, Rovereto, Italy
    For correspondence
    daniel.chicharro@iit.it
    Competing interests
    The authors declare that no competing interests exist.
  2. Stefano Panzeri

    Center for Neuroscience and Cognitive Systems, Italian Institute of Technology, Rovereto, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1700-8909
  3. Ralf M Haefner

    Brain & Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, United States
    For correspondence
    ralf.haefner@rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5031-0379

Funding

National Institute of Neurological Disorders and Stroke (R01 NS108410)

  • Stefano Panzeri

National Institute of Neurological Disorders and Stroke (U19 NS107464)

  • Stefano Panzeri

National Eye Institute (R01 EY028811)

  • Ralf M Haefner

Fondation Bertarelli

  • Daniel Chicharro

National Institute of Neurological Disorders and Stroke (U19 NS118246)

  • Ralf M Haefner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Chicharro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,933
    views
  • 272
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Chicharro
  2. Stefano Panzeri
  3. Ralf M Haefner
(2021)
Stimulus-dependent relationships between behavioral choice and sensory neural responses
eLife 10:e54858.
https://doi.org/10.7554/eLife.54858

Share this article

https://doi.org/10.7554/eLife.54858

Further reading

    1. Neuroscience
    Sisi Wang, Freek van Ede
    Research Article

    A classic distinction from the domain of external attention is that between anticipatory orienting and subsequent re-orienting of attention to unexpected events. Whether and how humans also re-orient attention ‘in mind’ following expected and unexpected working-memory tests remains elusive. We leveraged spatial modulations in neural activity and gaze to isolate re-orienting within the spatial layout of visual working memory following central memory tests of certain, expected, or unexpected mnemonic content. Besides internal orienting after predictive cues, we unveil a second stage of internal attentional deployment following both expected and unexpected memory tests. Following expected tests, internal attentional deployment was not contingent on prior orienting, suggesting an additional verification – ‘double checking’ – in memory. Following unexpected tests, re-focusing of alternative memory content was prolonged. This brings attentional re-orienting to the domain of working memory and underscores how memory tests can invoke either a verification or a revision of our internal focus.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.