Stimulus-dependent relationships between behavioral choice and sensory neural responses

  1. Daniel Chicharro  Is a corresponding author
  2. Stefano Panzeri
  3. Ralf M Haefner  Is a corresponding author
  1. Istituto Italiano di Tecnologia, Italy
  2. University of Rochester, United States

Abstract

Understanding perceptual decision-making requires linking sensory neural responses to behavioral choices. In two-choice tasks, activity-choice covariations are commonly quantified with a single measure of choice probability (CP), without characterizing their changes across stimulus levels. We provide theoretical conditions for stimulus dependencies of activity-choice covariations. Assuming a general decision-threshold model, which comprises both feedforward and feedback processing and allows for a stimulus-modulated neural population covariance, we analytically predict a very general and previously unreported stimulus dependence of CPs. We develop new tools, including refined analyses of CPs and generalized linear models with stimulus-choice interactions, which accurately assess the stimulus- or choice-driven signals of each neuron, characterizing stimulus-dependent patterns of choice-related signals. With these tools, we analyze CPs of macaque MT neurons during a motion discrimination task. Our analysis provides preliminary empirical evidence for the promise of studying stimulus dependencies of choice-related signals, encouraging further assessment in wider data sets.

Data availability

No data was collected as part of this study.

The following previously published data sets were used

Article and author information

Author details

  1. Daniel Chicharro

    Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
    For correspondence
    daniel.chicharro@iit.it
    Competing interests
    The authors declare that no competing interests exist.
  2. Stefano Panzeri

    Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1700-8909
  3. Ralf M Haefner

    Brain & Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, United States
    For correspondence
    ralf.haefner@rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5031-0379

Funding

National Institute of Neurological Disorders and Stroke (R01 NS108410)

  • Stefano Panzeri

National Institute of Neurological Disorders and Stroke (U19 NS107464)

  • Stefano Panzeri

National Eye Institute (R01 EY028811)

  • Ralf M Haefner

Fondation Bertarelli

  • Daniel Chicharro

National Institute of Neurological Disorders and Stroke (U19 NS118246)

  • Ralf M Haefner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kristine Krug, University of Oxford, United Kingdom

Version history

  1. Received: January 2, 2020
  2. Accepted: April 6, 2021
  3. Accepted Manuscript published: April 7, 2021 (version 1)
  4. Accepted Manuscript updated: April 9, 2021 (version 2)
  5. Version of Record published: June 7, 2021 (version 3)
  6. Version of Record updated: June 15, 2021 (version 4)

Copyright

© 2021, Chicharro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,868
    views
  • 260
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Chicharro
  2. Stefano Panzeri
  3. Ralf M Haefner
(2021)
Stimulus-dependent relationships between behavioral choice and sensory neural responses
eLife 10:e54858.
https://doi.org/10.7554/eLife.54858

Share this article

https://doi.org/10.7554/eLife.54858

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.