Stimulus-dependent relationships between behavioral choice and sensory neural responses

  1. Daniel Chicharro  Is a corresponding author
  2. Stefano Panzeri
  3. Ralf M Haefner  Is a corresponding author
  1. Istituto Italiano di Tecnologia, Italy
  2. University of Rochester, United States

Abstract

Understanding perceptual decision-making requires linking sensory neural responses to behavioral choices. In two-choice tasks, activity-choice covariations are commonly quantified with a single measure of choice probability (CP), without characterizing their changes across stimulus levels. We provide theoretical conditions for stimulus dependencies of activity-choice covariations. Assuming a general decision-threshold model, which comprises both feedforward and feedback processing and allows for a stimulus-modulated neural population covariance, we analytically predict a very general and previously unreported stimulus dependence of CPs. We develop new tools, including refined analyses of CPs and generalized linear models with stimulus-choice interactions, which accurately assess the stimulus- or choice-driven signals of each neuron, characterizing stimulus-dependent patterns of choice-related signals. With these tools, we analyze CPs of macaque MT neurons during a motion discrimination task. Our analysis provides preliminary empirical evidence for the promise of studying stimulus dependencies of choice-related signals, encouraging further assessment in wider data sets.

Data availability

No data was collected as part of this study.

The following previously published data sets were used

Article and author information

Author details

  1. Daniel Chicharro

    Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
    For correspondence
    daniel.chicharro@iit.it
    Competing interests
    The authors declare that no competing interests exist.
  2. Stefano Panzeri

    Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1700-8909
  3. Ralf M Haefner

    Brain & Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, United States
    For correspondence
    ralf.haefner@rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5031-0379

Funding

National Institute of Neurological Disorders and Stroke (R01 NS108410)

  • Stefano Panzeri

National Institute of Neurological Disorders and Stroke (U19 NS107464)

  • Stefano Panzeri

National Eye Institute (R01 EY028811)

  • Ralf M Haefner

Fondation Bertarelli

  • Daniel Chicharro

National Institute of Neurological Disorders and Stroke (U19 NS118246)

  • Ralf M Haefner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kristine Krug, University of Oxford, United Kingdom

Publication history

  1. Received: January 2, 2020
  2. Accepted: April 6, 2021
  3. Accepted Manuscript published: April 7, 2021 (version 1)
  4. Accepted Manuscript updated: April 9, 2021 (version 2)
  5. Version of Record published: June 7, 2021 (version 3)
  6. Version of Record updated: June 15, 2021 (version 4)

Copyright

© 2021, Chicharro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,520
    Page views
  • 239
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Chicharro
  2. Stefano Panzeri
  3. Ralf M Haefner
(2021)
Stimulus-dependent relationships between behavioral choice and sensory neural responses
eLife 10:e54858.
https://doi.org/10.7554/eLife.54858

Further reading

    1. Neuroscience
    Liqiang Chen et al.
    Short Report

    The presynaptic protein α-synuclein (αSyn) has been suggested to be involved in the pathogenesis of Parkinson’s disease (PD). In PD, the amygdala is prone to develop insoluble αSyn aggregates, and it has been suggested that circuit dysfunction involving the amygdala contributes to the psychiatric symptoms. Yet, how αSyn aggregates affect amygdala function is unknown. In this study, we examined αSyn in glutamatergic axon terminals and the impact of its aggregation on glutamatergic transmission in the basolateral amygdala (BLA). We found that αSyn is primarily present in the vesicular glutamate transporter 1-expressing (vGluT1+) terminals in mouse BLA, which is consistent with higher levels of αSyn expression in vGluT1+ glutamatergic neurons in the cerebral cortex relative to the vGluT2+ glutamatergic neurons in the thalamus. We found that αSyn aggregation selectively decreased the cortico-BLA, but not the thalamo-BLA, transmission; and that cortico-BLA synapses displayed enhanced short-term depression upon repetitive stimulation. In addition, using confocal microscopy, we found that vGluT1+ axon terminals exhibited decreased levels of soluble αSyn, which suggests that lower levels of soluble αSyn might underlie the enhanced short-term depression of cortico-BLA synapses. In agreement with this idea, we found that cortico-BLA synaptic depression was also enhanced in αSyn knockout mice. In conclusion, both basal and dynamic cortico-BLA transmission were disrupted by abnormal aggregation of αSyn and these changes might be relevant to the perturbed cortical control of the amygdala that has been suggested to play a role in psychiatric symptoms in PD.

    1. Evolutionary Biology
    2. Neuroscience
    Elias T Lunsford et al.
    Research Article Updated

    Animals can evolve dramatic sensory functions in response to environmental constraints, but little is known about the neural mechanisms underlying these changes. The Mexican tetra, Astyanax mexicanus, is a leading model to study genetic, behavioral, and physiological evolution by comparing eyed surface populations and blind cave populations. We compared neurophysiological responses of posterior lateral line afferent neurons and motor neurons across A. mexicanus populations to reveal how shifts in sensory function may shape behavioral diversity. These studies indicate differences in intrinsic afferent signaling and gain control across populations. Elevated endogenous afferent activity identified a lower response threshold in the lateral line of blind cavefish relative to surface fish leading to increased evoked potentials during hair cell deflection in cavefish. We next measured the effect of inhibitory corollary discharges from hindbrain efferent neurons onto afferents during locomotion. We discovered that three independently derived cavefish populations have evolved persistent afferent activity during locomotion, suggesting for the first time that partial loss of function in the efferent system can be an evolutionary mechanism for neural adaptation of a vertebrate sensory system.