1. Biochemistry and Chemical Biology
  2. Genetics and Genomics
Download icon

Transposase assisted tagmentation of RNA/DNA hybrid duplexes

Short Report
  • Cited 5
  • Views 4,193
  • Annotations
Cite this article as: eLife 2020;9:e54919 doi: 10.7554/eLife.54919

Abstract

Tn5-mediated transposition of double-strand DNA has been widely utilized in various high-throughput sequencing applications. Here, we report that the Tn5 transposase is also capable of direct tagmentation of RNA/DNA hybrids in vitro. As a proof-of-concept application, we utilized this activity to replace the traditional library construction procedure of RNA sequencing, which contains many laborious and time-consuming processes. Results of Transposase assisted RNA/DNA hybrids Co-tagmEntation (termed 'TRACE-seq') are compared to traditional RNA-seq methods in terms of detected gene number, gene body coverage, gene expression measurement, library complexity, and differential expression analysis. At the meantime, TRACE-seq enables a cost-effective one-tube library construction protocol and hence is more rapid (within 6h) and convenient. We expect this tagmentation activity on RNA/DNA hybrids to have broad potentials on RNA biology and chromatin research.

Data availability

High-throughput sequence data has been deposited in GEO under accession code GSE143422. REVIEW: To review GEO accession GSE143422, please go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE143422 and enter token cfilsuwgplodnap into the box.

The following data sets were generated

Article and author information

Author details

  1. Bo Lu

    Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Liting Dong

    Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8396-374X
  3. Danyang Yi

    School of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Meiling Zhang

    School of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chenxu Zhu

    School of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4216-6562
  6. Xiaoyu Li

    School of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Chengqi Yi

    School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
    For correspondence
    chengqi.yi@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2540-9729

Funding

National Natural Science Foundation of China (31861143026)

  • Chengqi Yi

National Natural Science Foundation of China (91740112)

  • Chengqi Yi

Ministry of Science and Technology of the People's Republic of China (2019YFA0110900)

  • Chengqi Yi

Ministry of Science and Technology of the People's Republic of China (2019YFA0802201)

  • Chengqi Yi

National Natural Science Foundation of China (21825701)

  • Chengqi Yi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Martha L. Bulyk, Dana-Farber Cancer Institute, United States

Publication history

  1. Received: January 6, 2020
  2. Accepted: July 22, 2020
  3. Accepted Manuscript published: July 23, 2020 (version 1)
  4. Version of Record published: August 4, 2020 (version 2)

Copyright

© 2020, Lu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,193
    Page views
  • 504
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Molly C Sutherland et al.
    Research Article

    Cytochromes c are ubiquitous heme proteins in mitochondria and bacteria, all possessing a CXXCH (CysXxxXxxCysHis) motif with covalently attached heme. We describe the first in vitro reconstitution of cytochrome c biogenesis using purified mitochondrial (HCCS) and bacterial (CcsBA) cytochrome c synthases. We employ apocytochrome c and peptide analogs containing CXXCH as substrates, examining recognition determinants, thioether attachment, and subsequent release and folding of cytochrome c. Peptide analogs reveal very different recognition requirements between HCCS and CcsBA. For HCCS, a minimal 16-mer peptide is required, comprised of CXXCH and adjacent alpha helix 1, yet neither thiol is critical for recognition. For bacterial CcsBA, both thiols and histidine are required, but not alpha helix 1. Heme attached peptide analogs are not released from the HCCS active site; thus, folding is important in the release mechanism. Peptide analogs behave as inhibitors of cytochrome c biogenesis, paving the way for targeted control.

    1. Biochemistry and Chemical Biology
    Weihan Li et al.
    Research Advance Updated

    The unfolded protein response (UPR) maintains protein folding homeostasis in the endoplasmic reticulum (ER). In metazoan cells, the Ire1 branch of the UPR initiates two functional outputs—non-conventional mRNA splicing and selective mRNA decay (RIDD). By contrast, Ire1 orthologs from Saccharomyces cerevisiae and Schizosaccharomyces pombe are specialized for only splicing or RIDD, respectively. Previously, we showed that the functional specialization lies in Ire1’s RNase activity, which is either stringently splice-site specific or promiscuous (Li et al., 2018). Here, we developed an assay that reports on Ire1’s RNase promiscuity. We found that conversion of two amino acids within the RNase domain of S. cerevisiae Ire1 to their S. pombe counterparts rendered it promiscuous. Using biochemical assays and computational modeling, we show that the mutations rewired a pair of salt bridges at Ire1 RNase domain’s dimer interface, changing its protomer alignment. Thus, Ire1 protomer alignment affects its substrates specificity.