AirID, a novel proximity biotinylation enzyme, for analysis of protein-protein interactions

  1. Kohki Kido
  2. Satoshi Yamanaka
  3. Shogo Nakano
  4. Kou Motani
  5. Souta Shinohara
  6. Akira Nozawa
  7. Hidetaka Kosako
  8. Sohei Ito
  9. Tatsuya Sawasaki  Is a corresponding author
  1. Ehime University, Japan
  2. University of Shizuoka, Japan
  3. Tokushima University, Japan

Abstract

Proximity biotinylation based on Escherichia coli BirA enzymes like BioID (BirA*) and TurboID is a key technology for identifying proteins interacting with a target protein in a cell or organism. However, there have been some improvements in the enzymes for that purpose. Here, we demonstrate a novel BirA enzyme, AirID (ancestral BirA for proximity-dependent biotin identification), which was designed de novo using an ancestral enzyme reconstruction algorithm and metagenome data. AirID-fusion proteins like AirID-p53 or AirID-IκBα indicated biotinylation of MDM2 or RelA, respectively, in vitro and in cells, respectively. AirID-CRBN showed the pomalidomide-dependent biotinylation of IKZF1 and SALL4 in vitro. AirID-IκBα biotinylated the endogenous CUL4 and RBX1 in the CRL4CRBN complex based on the streptavidin pull-down assay. LC-MS/MS analysis of cells stably expressing AirID-IκBα showed top-level biotinylation of RelA proteins. These results indicate that AirID is a novel enzyme for analysing protein–protein interactions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 3, 4, and 6.

Article and author information

Author details

  1. Kohki Kido

    Proteo-Science Center, Ehime University, Matsuyama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Satoshi Yamanaka

    Proteo-Science Center, Ehime University, Matsuyama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Shogo Nakano

    Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Kou Motani

    Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Souta Shinohara

    Proteo-Science Center, Ehime University, Matsuyama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Akira Nozawa

    Proteo-Science Center, Ehime University, Matsuyama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Hidetaka Kosako

    Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Sohei Ito

    Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Tatsuya Sawasaki

    Proteo-Science Center, Ehime University, Matsuyama, Japan
    For correspondence
    sawasaki@ehime-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7952-0556

Funding

Japan Agency for Medical Research and Development (JP19am0101077)

  • Tatsuya Sawasaki

Japan Society for the Promotion of Science (JP16H06579)

  • Tatsuya Sawasaki

Japan Society for the Promotion of Science (JP16H04729)

  • Tatsuya Sawasaki

Japan Society for the Promotion of Science (JP19H03218)

  • Tatsuya Sawasaki

Japan Society for the Promotion of Science (18KK0229)

  • Hidetaka Kosako

Japan Society for the Promotion of Science (19H04966)

  • Hidetaka Kosako

Takeda Science Foundation

  • Tatsuya Sawasaki

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Volker Dötsch, Goethe University, Germany

Publication history

  1. Received: January 8, 2020
  2. Accepted: May 7, 2020
  3. Accepted Manuscript published: May 11, 2020 (version 1)
  4. Version of Record published: June 18, 2020 (version 2)

Copyright

© 2020, Kido et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 19,169
    Page views
  • 2,773
    Downloads
  • 52
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kohki Kido
  2. Satoshi Yamanaka
  3. Shogo Nakano
  4. Kou Motani
  5. Souta Shinohara
  6. Akira Nozawa
  7. Hidetaka Kosako
  8. Sohei Ito
  9. Tatsuya Sawasaki
(2020)
AirID, a novel proximity biotinylation enzyme, for analysis of protein-protein interactions
eLife 9:e54983.
https://doi.org/10.7554/eLife.54983

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Juan J Apiz Saab, Lindsey N Dzierozynski ... Alexander Muir
    Research Advance

    Nutrient stress in the tumor microenvironment requires cancer cells to adopt adaptive metabolic programs for survival and proliferation. Therefore, knowledge of microenvironmental nutrient levels and how cancer cells cope with such nutrition is critical to understand the metabolism underpinning cancer cell biology. Previously, we performed quantitative metabolomics of the interstitial fluid (the local perfusate) of murine pancreatic ductal adenocarcinoma (PDAC) tumors to comprehensively characterize nutrient availability in the microenvironment of these tumors (M. R. Sullivan, Danai, et al., 2019). Here, we develop Tumor Interstitial Fluid Medium (TIFM), a cell culture medium that contains nutrient levels representative of the PDAC microenvironment, enabling us to study PDAC metabolism ex vivo under physiological nutrient conditions. We show that PDAC cells cultured in TIFM adopt a cellular state closer to that of PDAC cells present in tumors compared to standard culture models. Further, using the TIFM model, we found arginine biosynthesis is active in PDAC and allows PDAC cells to maintain levels of this amino acid despite microenvironmental arginine depletion. We also show that myeloid derived arginase activity is largely responsible for the low levels of arginine in PDAC tumors. Altogether, these data indicate that nutrient availability in tumors is an important determinant of cancer cell metabolism and behavior, and cell culture models that incorporate physiological nutrient availability have improved fidelity to in vivo systems and enable the discovery of novel cancer metabolic phenotypes.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Kanishk Jain, Matthew R Marunde ... Brian D Strahl
    Short Report Updated

    In nucleosomes, histone N-terminal tails exist in dynamic equilibrium between free/accessible and collapsed/DNA-bound states. The latter state is expected to impact histone N-termini availability to the epigenetic machinery. Notably, H3 tail acetylation (e.g. K9ac, K14ac, K18ac) is linked to increased H3K4me3 engagement by the BPTF PHD finger, but it is unknown if this mechanism has a broader extension. Here, we show that H3 tail acetylation promotes nucleosomal accessibility to other H3K4 methyl readers, and importantly, extends to H3K4 writers, notably methyltransferase MLL1. This regulation is not observed on peptide substrates yet occurs on the cis H3 tail, as determined with fully-defined heterotypic nucleosomes. In vivo, H3 tail acetylation is directly and dynamically coupled with cis H3K4 methylation levels. Together, these observations reveal an acetylation ‘chromatin switch’ on the H3 tail that modulates read-write accessibility in nucleosomes and resolves the long-standing question of why H3K4me3 levels are coupled with H3 acetylation.