AirID, a novel proximity biotinylation enzyme, for analysis of protein-protein interactions

  1. Kohki Kido
  2. Satoshi Yamanaka
  3. Shogo Nakano
  4. Kou Motani
  5. Souta Shinohara
  6. Akira Nozawa
  7. Hidetaka Kosako
  8. Sohei Ito
  9. Tatsuya Sawasaki  Is a corresponding author
  1. Ehime University, Japan
  2. University of Shizuoka, Japan
  3. Tokushima University, Japan

Abstract

Proximity biotinylation based on Escherichia coli BirA enzymes like BioID (BirA*) and TurboID is a key technology for identifying proteins interacting with a target protein in a cell or organism. However, there have been some improvements in the enzymes for that purpose. Here, we demonstrate a novel BirA enzyme, AirID (ancestral BirA for proximity-dependent biotin identification), which was designed de novo using an ancestral enzyme reconstruction algorithm and metagenome data. AirID-fusion proteins like AirID-p53 or AirID-IκBα indicated biotinylation of MDM2 or RelA, respectively, in vitro and in cells, respectively. AirID-CRBN showed the pomalidomide-dependent biotinylation of IKZF1 and SALL4 in vitro. AirID-IκBα biotinylated the endogenous CUL4 and RBX1 in the CRL4CRBN complex based on the streptavidin pull-down assay. LC-MS/MS analysis of cells stably expressing AirID-IκBα showed top-level biotinylation of RelA proteins. These results indicate that AirID is a novel enzyme for analysing protein–protein interactions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 3, 4, and 6.

Article and author information

Author details

  1. Kohki Kido

    Proteo-Science Center, Ehime University, Matsuyama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Satoshi Yamanaka

    Proteo-Science Center, Ehime University, Matsuyama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Shogo Nakano

    Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Kou Motani

    Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Souta Shinohara

    Proteo-Science Center, Ehime University, Matsuyama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Akira Nozawa

    Proteo-Science Center, Ehime University, Matsuyama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Hidetaka Kosako

    Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Sohei Ito

    Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Tatsuya Sawasaki

    Proteo-Science Center, Ehime University, Matsuyama, Japan
    For correspondence
    sawasaki@ehime-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7952-0556

Funding

Japan Agency for Medical Research and Development (JP19am0101077)

  • Tatsuya Sawasaki

Japan Society for the Promotion of Science (JP16H06579)

  • Tatsuya Sawasaki

Japan Society for the Promotion of Science (JP16H04729)

  • Tatsuya Sawasaki

Japan Society for the Promotion of Science (JP19H03218)

  • Tatsuya Sawasaki

Japan Society for the Promotion of Science (18KK0229)

  • Hidetaka Kosako

Japan Society for the Promotion of Science (19H04966)

  • Hidetaka Kosako

Takeda Science Foundation

  • Tatsuya Sawasaki

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Volker Dötsch, Goethe University, Germany

Version history

  1. Received: January 8, 2020
  2. Accepted: May 7, 2020
  3. Accepted Manuscript published: May 11, 2020 (version 1)
  4. Version of Record published: June 18, 2020 (version 2)

Copyright

© 2020, Kido et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 21,253
    Page views
  • 2,979
    Downloads
  • 62
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kohki Kido
  2. Satoshi Yamanaka
  3. Shogo Nakano
  4. Kou Motani
  5. Souta Shinohara
  6. Akira Nozawa
  7. Hidetaka Kosako
  8. Sohei Ito
  9. Tatsuya Sawasaki
(2020)
AirID, a novel proximity biotinylation enzyme, for analysis of protein-protein interactions
eLife 9:e54983.
https://doi.org/10.7554/eLife.54983

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Daniel Muñoz-Reyes, Levi J McClelland ... Maria Jose Sanchez-Barrena
    Research Article

    The Neuronal Calcium Sensor 1, an EF-hand Ca2+ binding protein, and Ric-8A coregulate synapse number and probability of neurotransmitter release. Recently, the structures of Ric-8A bound to Ga have revealed how Ric-8A phosphorylation promotes Ga recognition and activity as a chaperone and guanine nucleotide exchange factor. However, the molecular mechanism by which NCS-1 regulates Ric-8A activity and its interaction with Ga subunits is not well understood. Given the interest in the NCS-1/Ric-8A complex as a therapeutic target in nervous system disorders, it is necessary to shed light on this molecular mechanism of action at atomic level. We have reconstituted NCS-1/Ric-8A complexes to conduct a multimodal approach and determine the sequence of Ca2+ signals and phosphorylation events that promote the interaction of Ric-8A with Ga. Our data show that the binding of NCS-1 and Ga to Ric-8A are mutually exclusive. Importantly, NCS-1 induces a structural rearrangement in Ric-8A that traps the protein in a conformational state that is inaccessible to Casein Kinase II-mediated phosphorylation, demonstrating one aspect of its negative regulation of Ric-8A-mediated G-protein signaling. Functional experiments indicate a loss of Ric-8A GEF activity towards Ga when complexed with NCS-1, and restoration of nucleotide exchange activity upon increasing Ca2+ concentration. Finally, the high-resolution crystallographic data reported here define the NCS-1/Ric-8A interface and will allow the development of therapeutic synapse function regulators with improved activity and selectivity.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Riham Ayoubi, Joel Ryan ... Carl Laflamme
    Research Advance

    Antibodies are critical reagents to detect and characterize proteins. It is commonly understood that many commercial antibodies do not recognize their intended targets, but information on the scope of the problem remains largely anecdotal, and as such, feasibility of the goal of at least one potent and specific antibody targeting each protein in a proteome cannot be assessed. Focusing on antibodies for human proteins, we have scaled a standardized characterization approach using parental and knockout cell lines (Laflamme et al., 2019) to assess the performance of 614 commercial antibodies for 65 neuroscience-related proteins. Side-by-side comparisons of all antibodies against each target, obtained from multiple commercial partners, have demonstrated that: (i) more than 50% of all antibodies failed in one or more applications, (ii) yet, ~50–75% of the protein set was covered by at least one high-performing antibody, depending on application, suggesting that coverage of human proteins by commercial antibodies is significant; and (iii) recombinant antibodies performed better than monoclonal or polyclonal antibodies. The hundreds of underperforming antibodies identified in this study were found to have been used in a large number of published articles, which should raise alarm. Encouragingly, more than half of the underperforming commercial antibodies were reassessed by the manufacturers, and many had alterations to their recommended usage or were removed from the market. This first study helps demonstrate the scale of the antibody specificity problem but also suggests an efficient strategy toward achieving coverage of the human proteome; mine the existing commercial antibody repertoire, and use the data to focus new renewable antibody generation efforts.