Evolution: Mapping the ancestry of primates

Structures in the inner ear can help determine the evolutionary relationship between extinct and living primates.
  1. Ignacio Martínez  Is a corresponding author
  2. Mercedes Conde-Valverde
  1. Cátedra de Otoacústica Evolutiva y Paleoantropología, HM Hospitales - Universidad de Alcalá, Spain

When the term ‘primates’ was originally coined by Carl Linneus back in 1758, it was to classify all species of monkeys, humans and apes into one group based on their anatomical similarities. At that time, the observed similarities were simply a curiosity and did not imply any special relationship between these species. Later, when Charles Darwin published ‘On the Origin of Species’ in 1859, it became clear that species with comparable anatomies are often evolutionarily linked. And when Thomas Huxley published 'Evidence as to Man’s Place in Nature' in 1863, he grouped humans, gibbons, orangutans, gorillas and chimpanzees into a superfamily named the Hominoidea. Since then, understanding the evolutionary relationships within this superfamily has been a fundamental part of research on human evolution.

Extant members of this family, also known as hominoids, can be arranged into two families: the Hylobatidae family, which includes gibbons; and the Hominidae family, which includes orangutans, gorillas, chimpanzees and humans (Figure 1). About 16 to 7 million years ago, during the middle and upper Miocene period, hominoids expanded throughout Europe, Africa and Asia, and diversified into at least 12 different species which have now become extinct (Begun et al., 2012). Fossils from this time led to the identification of a particularly intriguing species called Oreopithecus bambolii (Moyà-Solà et al., 2004; Moyà-Solà et al., 2009).

The evolutionary relationship between O. bambolii and the Hominidae family.

Non-extinct members of the Hominoidea superfamily are split into two families: the Hominidae family, which includes orangutans (Pongo), gorillas (Gorilla), chimpanzees (Pan) and humans (Homo); and the Hylobatidae family, which includes various gibbons (Hylotbates, Nomascus, Symphalangus and Hoolok). However, it is not clear if the extinct species Oreopithecus bambolii split from this branch of the tree of life after the Hylobatidae family split, in which case O. bambolii could be part of Hominidae family (A), or if it split before the Hylobatidae family split (B). Uriciuoli et al. found that O. bambolii is not part of the Hominidae family (that is, scenario B).

O. bambolii fossils date back about 8 million years and come from sites in Sardinia and Tuscany (Rook et al., 2011). The varied features within these fossils have made it difficult to determine the evolutionary history of O. bambolii and its relationship to living hominoid species (Harrison and Rook, 1997; Köhler and Moyà-Solà, 1997). As a result, there is an ongoing debate about whether or not O. bambolii should be included in the Hominidae family (Begun et al., 2012; Nengo et al., 2017). The key to solving this question is to establish how closely related O. bambolii are to the Hominidae family compared to gibbons (Figure 1).

Now, in eLife, David Alba (Institut Català de Paleontologia Miquel Crusafont of the Universitat Autònoma de Barcelona) and colleagues – including Alessandro Urciuoli (Barcelona) as first author, and researchers in France and South Africa – report how studying the shape of semicircular canals in the ears of non-extinct primates can provide a better understanding of how the hominoid family evolved over time (Urciuoli et al., 2020). In recent years, these canals (which form part of the bony exterior of the inner ear) have been used to determine the degree of similarity between members of the Hominidae family (Ponce de León et al., 2018; Quam et al., 2016; Beaudet et al., 2019).

The team reconstructed the three-dimensional shape of semicircular canals of 27 species of living primates and two extinct species, including the O. bambolii. This revealed that structures in the inner ear can be used to study the evolutionary relationships between living and extinct hominoid species.

Urciuoli et al. found that although the semicircular canals of O. bambolii had similar characteristics to hominoids, this anatomical region had more features in common with two other primate families known as the cercopithecoids and platyrrhines. This suggests that O. bambolii are evolutionarily further away from orangutans, gorillas, chimpanzees and humans than gibbons, and therefore cannot be considered a true member of the Hominidae family (Figure 1B).

The next step will be to study the semicircular canals of other extinct hominoid species, and repeat the experiment using other anatomical regions in the inner ear, such as the cochlea.

References

    1. Harrison T
    2. Rook L
    (1997)
    Function, Phylogeny, and Fossils. Advances in Primatology
    Enigmatic anthropoid or misunderstood ape? The phylogenetic status of Oreopithecus bambolii reconsidered, Function, Phylogeny, and Fossils. Advances in Primatology, Boston, MA, Springer, 10.1007/978-1-4899-0075-3.

Article and author information

Author details

  1. Ignacio Martínez

    Ignacio Martínez is in the Cátedra de Otoacústica Evolutiva y Paleoantropología, HM Hospitales - Universidad de Alcalá, Madrid, Spain

    For correspondence
    ignacio.martinezm@uah.es
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1835-9199
  2. Mercedes Conde-Valverde

    Mercedes Conde-Valverde is in the Cátedra de Otoacústica Evolutiva y Paleoantropología, HM Hospitales - Universidad de Alcalá, Madrid, Spain

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1891-5324

Publication history

  1. Version of Record published: March 3, 2020 (version 1)

Copyright

© 2020, Martínez and Conde-Valverde

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,917
    Page views
  • 179
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ignacio Martínez
  2. Mercedes Conde-Valverde
(2020)
Evolution: Mapping the ancestry of primates
eLife 9:e55429.
https://doi.org/10.7554/eLife.55429
  1. Further reading

Further reading

    1. Evolutionary Biology
    Alexei V Tkachenko, Sergei Maslov
    Research Article

    Life as we know it relies on the interplay between catalytic activity and information processing carried out by biological polymers. Here we present a plausible pathway by which a pool of prebiotic information-coding oligomers could acquire an early catalytic function, namely sequence-specific cleavage activity. Starting with a system capable of non-enzymatic templated replication, we demonstrate that even non-catalyzed spontaneous cleavage would promote proliferation by generating short fragments that act as primers. Furthermore, we show that catalytic cleavage function can naturally emerge and proliferate in this system. Specifically, a cooperative catalytic network with four subpopulations of oligomers is selected by the evolution in competition with chains lacking catalytic activity. The cooperative system emerges through the functional differentiation of oligomers into catalysts and their substrates. The model is inspired by the structure of the hammerhead RNA enzyme as well as other DNA- and RNA-based enzymes with cleavage activity that readily emerge through natural or artificial selection. We identify the conditions necessary for the emergence of the cooperative catalytic network. In particular, we show that it requires the catalytic rate enhancement over the spontaneous cleavage rate to be at least 102–103, a factor consistent with the existing experiments. The evolutionary pressure leads to a further increase in catalytic efficiency. The presented mechanism provides an escape route from a relatively simple pairwise replication of oligomers toward a more complex behavior involving catalytic function. This provides a bridge between the information-first origin of life scenarios and the paradigm of autocatalytic sets and hypercycles, albeit based on cleavage rather than synthesis of reactants.

    1. Cell Biology
    2. Evolutionary Biology
    Jonathan E Phillips, Duojia Pan
    Research Advance

    The genomes of close unicellular relatives of animals encode orthologs of many genes that regulate animal development. However, little is known about the function of such genes in unicellular organisms or the evolutionary process by which these genes came to function in multicellular development. The Hippo pathway, which regulates cell proliferation and tissue size in animals, is present in some of the closest unicellular relatives of animals, including the amoeboid organism Capsaspora owczarzaki. We previously showed that the Capsaspora ortholog of the Hippo pathway nuclear effector Yorkie/YAP/TAZ (coYki) regulates actin dynamics and the three-dimensional morphology of Capsaspora cell aggregates, but is dispensable for cell proliferation control (Phillips et al., 2022). However, the function of upstream Hippo pathway components, and whether and how they regulate coYki in Capsaspora, remained unknown. Here, we analyze the function of the upstream Hippo pathway kinases coHpo and coWts in Capsaspora by generating mutant lines for each gene. Loss of either kinase results in increased nuclear localization of coYki, indicating an ancient, premetazoan origin of this Hippo pathway regulatory mechanism. Strikingly, we find that loss of either kinase causes a contractile cell behavior and increased density of cell packing within Capsaspora aggregates. We further show that this increased cell density is not due to differences in proliferation, but rather actomyosin-dependent changes in the multicellular architecture of aggregates. Given its well-established role in cell density-regulated proliferation in animals, the increased density of cell packing in coHpo and coWts mutants suggests a shared and possibly ancient and conserved function of the Hippo pathway in cell density control. Together, these results implicate cytoskeletal regulation but not proliferation as an ancestral function of the Hippo pathway kinase cascade and uncover a novel role for Hippo signaling in regulating cell density in a proliferation-independent manner.