Evolution: Mapping the ancestry of primates

Structures in the inner ear can help determine the evolutionary relationship between extinct and living primates.
  1. Ignacio Martínez  Is a corresponding author
  2. Mercedes Conde-Valverde
  1. Cátedra de Otoacústica Evolutiva y Paleoantropología, HM Hospitales - Universidad de Alcalá, Spain

When the term ‘primates’ was originally coined by Carl Linneus back in 1758, it was to classify all species of monkeys, humans and apes into one group based on their anatomical similarities. At that time, the observed similarities were simply a curiosity and did not imply any special relationship between these species. Later, when Charles Darwin published ‘On the Origin of Species’ in 1859, it became clear that species with comparable anatomies are often evolutionarily linked. And when Thomas Huxley published 'Evidence as to Man’s Place in Nature' in 1863, he grouped humans, gibbons, orangutans, gorillas and chimpanzees into a superfamily named the Hominoidea. Since then, understanding the evolutionary relationships within this superfamily has been a fundamental part of research on human evolution.

Extant members of this family, also known as hominoids, can be arranged into two families: the Hylobatidae family, which includes gibbons; and the Hominidae family, which includes orangutans, gorillas, chimpanzees and humans (Figure 1). About 16 to 7 million years ago, during the middle and upper Miocene period, hominoids expanded throughout Europe, Africa and Asia, and diversified into at least 12 different species which have now become extinct (Begun et al., 2012). Fossils from this time led to the identification of a particularly intriguing species called Oreopithecus bambolii (Moyà-Solà et al., 2004; Moyà-Solà et al., 2009).

The evolutionary relationship between O. bambolii and the Hominidae family.

Non-extinct members of the Hominoidea superfamily are split into two families: the Hominidae family, which includes orangutans (Pongo), gorillas (Gorilla), chimpanzees (Pan) and humans (Homo); and the Hylobatidae family, which includes various gibbons (Hylotbates, Nomascus, Symphalangus and Hoolok). However, it is not clear if the extinct species Oreopithecus bambolii split from this branch of the tree of life after the Hylobatidae family split, in which case O. bambolii could be part of Hominidae family (A), or if it split before the Hylobatidae family split (B). Uriciuoli et al. found that O. bambolii is not part of the Hominidae family (that is, scenario B).

O. bambolii fossils date back about 8 million years and come from sites in Sardinia and Tuscany (Rook et al., 2011). The varied features within these fossils have made it difficult to determine the evolutionary history of O. bambolii and its relationship to living hominoid species (Harrison and Rook, 1997; Köhler and Moyà-Solà, 1997). As a result, there is an ongoing debate about whether or not O. bambolii should be included in the Hominidae family (Begun et al., 2012; Nengo et al., 2017). The key to solving this question is to establish how closely related O. bambolii are to the Hominidae family compared to gibbons (Figure 1).

Now, in eLife, David Alba (Institut Català de Paleontologia Miquel Crusafont of the Universitat Autònoma de Barcelona) and colleagues – including Alessandro Urciuoli (Barcelona) as first author, and researchers in France and South Africa – report how studying the shape of semicircular canals in the ears of non-extinct primates can provide a better understanding of how the hominoid family evolved over time (Urciuoli et al., 2020). In recent years, these canals (which form part of the bony exterior of the inner ear) have been used to determine the degree of similarity between members of the Hominidae family (Ponce de León et al., 2018; Quam et al., 2016; Beaudet et al., 2019).

The team reconstructed the three-dimensional shape of semicircular canals of 27 species of living primates and two extinct species, including the O. bambolii. This revealed that structures in the inner ear can be used to study the evolutionary relationships between living and extinct hominoid species.

Urciuoli et al. found that although the semicircular canals of O. bambolii had similar characteristics to hominoids, this anatomical region had more features in common with two other primate families known as the cercopithecoids and platyrrhines. This suggests that O. bambolii are evolutionarily further away from orangutans, gorillas, chimpanzees and humans than gibbons, and therefore cannot be considered a true member of the Hominidae family (Figure 1B).

The next step will be to study the semicircular canals of other extinct hominoid species, and repeat the experiment using other anatomical regions in the inner ear, such as the cochlea.

References

    1. Harrison T
    2. Rook L
    (1997)
    Function, Phylogeny, and Fossils. Advances in Primatology
    Enigmatic anthropoid or misunderstood ape? The phylogenetic status of Oreopithecus bambolii reconsidered, Function, Phylogeny, and Fossils. Advances in Primatology, Boston, MA, Springer, 10.1007/978-1-4899-0075-3.

Article and author information

Author details

  1. Ignacio Martínez

    Ignacio Martínez is in the Cátedra de Otoacústica Evolutiva y Paleoantropología, HM Hospitales - Universidad de Alcalá, Madrid, Spain

    For correspondence
    ignacio.martinezm@uah.es
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1835-9199
  2. Mercedes Conde-Valverde

    Mercedes Conde-Valverde is in the Cátedra de Otoacústica Evolutiva y Paleoantropología, HM Hospitales - Universidad de Alcalá, Madrid, Spain

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1891-5324

Publication history

  1. Version of Record published: March 3, 2020 (version 1)

Copyright

© 2020, Martínez and Conde-Valverde

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,085
    Page views
  • 156
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ignacio Martínez
  2. Mercedes Conde-Valverde
(2020)
Evolution: Mapping the ancestry of primates
eLife 9:e55429.
https://doi.org/10.7554/eLife.55429
  1. Further reading

Further reading

    1. Ecology
    2. Evolutionary Biology
    Zinan Wang, Joseph P Receveur ... Henry Chung
    Research Article

    Maintaining water balance is a universal challenge for organisms living in terrestrial environments, especially for insects, which have essential roles in our ecosystem. Although the high surface area to volume ratio in insects makes them vulnerable to water loss, insects have evolved different levels of desiccation resistance to adapt to diverse environments. To withstand desiccation, insects use a lipid layer called cuticular hydrocarbons (CHCs) to reduce water evaporation from the body surface. It has long been hypothesized that the waterproofing capability of this CHC layer, which can confer different levels of desiccation resistance, depends on its chemical composition. However, it is unknown which CHC components are important contributors to desiccation resistance and how these components can determine differences in desiccation resistance. In this study, we used machine learning algorithms, correlation analyses, and synthetic CHCs to investigate how different CHC components affect desiccation resistance in 50 Drosophila and related species. We showed that desiccation resistance differences across these species can be largely explained by variation in CHC composition. In particular, length variation in a subset of CHCs, the methyl-branched CHCs (mbCHCs), is a key determinant of desiccation resistance. There is also a significant correlation between the evolution of longer mbCHCs and higher desiccation resistance in these species. Given that CHCs are almost ubiquitous in insects, we suggest that evolutionary changes in insect CHC components can be a general mechanism for the evolution of desiccation resistance and adaptation to diverse and changing environments.

    1. Evolutionary Biology
    Min Wang, Thomas A Stidham ... Zhonghe Zhou
    Research Article

    The independent movements and flexibility of various parts of the skull, called cranial kinesis, are an evolutionary innovation that is found in living vertebrates only in some squamates and crown birds and is considered to be a major factor underpinning much of the enormous phenotypic and ecological diversity of living birds, the most diverse group of extant amniotes. Compared to the postcranium, our understanding of the evolutionary assemblage of the characteristic modern bird skull has been hampered by sparse fossil records of early cranial materials, with competing hypotheses regarding the evolutionary development of cranial kinesis among early members of the avialans. Here, a detailed three-dimensional reconstruction of the skull of the Early Cretaceous enantiornithine Yuanchuavis kompsosoura allows for its in-depth description, including elements that are poorly known among early-diverging avialans but are central to deciphering the mosaic assembly of features required for modern avian cranial kinesis. Our reconstruction of the skull shows evolutionary and functional conservation of the temporal and palatal regions by retaining the ancestral theropod dinosaurian configuration within the skull of this otherwise derived and volant bird. Geometric morphometric analysis of the palatine suggests that loss of the jugal process represents the first step in the structural modifications of this element leading to the kinetic crown bird condition. The mixture of plesiomorphic temporal and palatal structures together with a derived avialan rostrum and postcranial skeleton encapsulated in Yuanchuavis manifests the key role of evolutionary mosaicism and experimentation in early bird diversification.