Wiskott Aldrich syndrome protein regulates non-selective autophagy and mitochondrial homeostasis in human myeloid cells

  1. Elizabeth Rivers
  2. Rajeev Rai
  3. Jonas Lӧtscher
  4. Michael Hollinshead
  5. Gasper Markelj
  6. James Thaventheran
  7. Austen JJ Worth
  8. Alessia Cavazza
  9. Christopher Hess
  10. Mona Bajaj-Elliott
  11. Adrian James Thrasher  Is a corresponding author
  1. UCL Institute of Child Health, United Kingdom
  2. University of Basel, Switzerland
  3. University of Cambridge, United Kingdom
  4. University Medical Centre Ljubljana, Slovenia
  5. Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom

Abstract

The actin cytoskeletal regulator Wiskott Aldrich syndrome protein (WASp) has been implicated in maintenance of the autophagy-inflammasome axis in innate murine immune cells. Here, we show that WASp deficiency is associated with impaired rapamycin-induced autophagosome formation and trafficking to lysosomes in primary human monocyte-derived macrophages (MDMs). WASp reconstitution in vitro and in WAS patients following clinical gene therapy restores autophagic flux and is dependent on the actin-related protein complex ARP2/3. Induction of mitochondrial damage with CCCP, as a model of selective autophagy, also reveals a novel ARP2/3-dependent role for WASp in formation of sequestrating actin cages and maintenance of mitochondrial network integrity. Furthermore, mitochondrial respiration is suppressed in WAS patient MDMs and unable to achieve normal maximal activity when stressed, indicating profound intrinsic metabolic dysfunction. Taken together, we provide evidence of new and important roles of human WASp in autophagic processes and immunometabolic regulation, which may mechanistically contribute to the complex WAS immunophenotype.

Data availability

All data associated with this study are present in this manuscript and Supporting Files.

Article and author information

Author details

  1. Elizabeth Rivers

    Infection, Immunity and Inflammation Programme, UCL Institute of Child Health, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Rajeev Rai

    Infection, Immunity and Inflammation Programme, UCL Institute of Child Health, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Jonas Lӧtscher

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael Hollinshead

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Gasper Markelj

    Department of Allergy, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
    Competing interests
    The authors declare that no competing interests exist.
  6. James Thaventheran

    Cambridge Institute for Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Austen JJ Worth

    Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6803-7385
  8. Alessia Cavazza

    Infection, Immunity and Inflammation Programme, UCL Institute of Child Health, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Christopher Hess

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Mona Bajaj-Elliott

    Infection, Immunity and Inflammation Programme, UCL Institute of Child Health, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Adrian James Thrasher

    Infection, Immunity and Inflammation Programme, UCL Institute of Child Health, London, United Kingdom
    For correspondence
    a.thrasher@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6097-6115

Funding

Wellcome Trust (090233/Z/09/Z)

  • Adrian James Thrasher

Wellcome Trust (201250/Z/16/Z)

  • Elizabeth Rivers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tiffany Horng, ShanghaiTech University, China

Ethics

Human subjects: For usage of human CD34+ HSPC from healthy and WAS donors, informed written consent was obtained in accordance with the Declaration of Helsinki and ethical approval from the Great Ormond Street Hospital for Children NHS Foundation Trust and the Institute of Child Health Research Ethics (08/H0713/87).

Version history

  1. Received: January 28, 2020
  2. Accepted: October 31, 2020
  3. Accepted Manuscript published: November 2, 2020 (version 1)
  4. Version of Record published: November 18, 2020 (version 2)

Copyright

© 2020, Rivers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,343
    Page views
  • 198
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elizabeth Rivers
  2. Rajeev Rai
  3. Jonas Lӧtscher
  4. Michael Hollinshead
  5. Gasper Markelj
  6. James Thaventheran
  7. Austen JJ Worth
  8. Alessia Cavazza
  9. Christopher Hess
  10. Mona Bajaj-Elliott
  11. Adrian James Thrasher
(2020)
Wiskott Aldrich syndrome protein regulates non-selective autophagy and mitochondrial homeostasis in human myeloid cells
eLife 9:e55547.
https://doi.org/10.7554/eLife.55547

Share this article

https://doi.org/10.7554/eLife.55547

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.