A dynamic charge-charge interaction modulates PP2A:B56 substrate recruitment

  1. Xinru Wang
  2. Dimitriya H Garvanska
  3. Isha Nasa
  4. Yumi Ueki
  5. Gang Zhang
  6. Arminja N Kettenbach
  7. Wolfgang Peti
  8. Jakob Nilsson  Is a corresponding author
  9. Rebecca Page  Is a corresponding author
  1. University of Arizona, United States
  2. University of Copenhagen, Denmark
  3. Geisel School of Medicine at Dartmouth, United States
  4. University of Copenhagen, Germany

Abstract

The recruitment of substrates by the ser/thr protein phosphatase 2A (PP2A) is poorly understood, limiting our understanding of PP2A-regulated signaling. Recently, the first PP2A:B56 consensus binding motif, LxxIxE, was identified. However, most validated LxxIxE motifs bind PP2A:B56 with micromolar affinities, suggesting that additional motifs exist to enhance PP2A:B56 binding. Here, we report the requirement of a positively charged motif in a subset of PP2A:B56 interactors, including KIF4A, to facilitate B56 binding via dynamic, electrostatic interactions. Using molecular and cellular experiments, we show that a conserved, negatively charged groove on B56 mediates dynamic binding. We also discovered that this positively charged motif, in addition to facilitating KIF4A dephosphorylation, is essential for condensin I binding, a function distinct and exclusive from PP2A-B56 binding. Together, these results reveal how dynamic, charge-charge interactions fine-tune the interactions mediated by specific motifs, providing a new framework for understanding how PP2A regulation drives cellular signaling.

Data availability

All NMR chemical shifts have been deposited in the BioMagResBank (BMRB 27913). Atomic coordinates and structure factors have been deposited in the Protein Data Bank (6OYL, 6VRO). The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaíno et al., 2014) through the PRIDE partner repository (PXD013886).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Xinru Wang

    Department of Chemistry and Biochemistry, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5994-707X
  2. Dimitriya H Garvanska

    The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Isha Nasa

    Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7699-795X
  4. Yumi Ueki

    The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Gang Zhang

    The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7697-7203
  6. Arminja N Kettenbach

    Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3979-4576
  7. Wolfgang Peti

    Department of Chemistry and Biochemistry, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jakob Nilsson

    The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Germany
    For correspondence
    jakob.nilsson@cpr.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4100-1125
  9. Rebecca Page

    Department of Chemistry and Biochemistry, University of Arizona, Tucson, United States
    For correspondence
    rebeccapage@email.arizona.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4645-1232

Funding

National Institute of General Medical Sciences (R35GM119455)

  • Arminja N Kettenbach

National Institute of General Medical Sciences (P20GM113132)

  • Arminja N Kettenbach

National Institute of General Medical Sciences (R01GM098482)

  • Rebecca Page

National Institute of Neurological Disorders and Stroke (R01NS091336)

  • Wolfgang Peti

National Institute of General Medical Sciences (R01GM134683)

  • Wolfgang Peti

Novo Nordisk (NNF14CC0001)

  • Jakob Nilsson

Independent Research Fund Denmark (DFF-7016-00086)

  • Jakob Nilsson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tony Hunter, Salk Institute for Biological Studies, United States

Publication history

  1. Received: February 12, 2020
  2. Accepted: March 14, 2020
  3. Accepted Manuscript published: March 20, 2020 (version 1)
  4. Version of Record published: March 31, 2020 (version 2)

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,629
    Page views
  • 489
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xinru Wang
  2. Dimitriya H Garvanska
  3. Isha Nasa
  4. Yumi Ueki
  5. Gang Zhang
  6. Arminja N Kettenbach
  7. Wolfgang Peti
  8. Jakob Nilsson
  9. Rebecca Page
(2020)
A dynamic charge-charge interaction modulates PP2A:B56 substrate recruitment
eLife 9:e55966.
https://doi.org/10.7554/eLife.55966
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    Makenna M Morck et al.
    Research Article

    Mutations in the lever arm of β-cardiac myosin are a frequent cause of hypertrophic cardiomyopathy, a disease characterized by hypercontractility and eventual hypertrophy of the left ventricle. Here, we studied five such mutations: three in the pliant region of the lever arm (D778V, L781P, and S782N) and two in the light chain-binding region (A797T and F834L). We investigated their effects on both motor function and myosin subfragment 2 (S2) tail-based autoinhibition. The pliant region mutations had varying effects on the motor function of a myosin construct lacking the S2 tail: overall, D778V increased power output, L781P reduced power output, and S782N had little effect on power output, while all three reduced the external force sensitivity of the actin detachment rate. With a myosin containing the motor domain and the proximal S2 tail, the pliant region mutations also attenuated autoinhibition in the presence of filamentous actin but had no impact in the absence of actin. By contrast, the light chain-binding region mutations had little effect on motor activity but produced marked reductions in autoinhibition in both the presence and absence of actin. Thus, mutations in the lever arm of β-cardiac myosin have divergent allosteric effects on myosin function, depending on whether they are in the pliant or light chain-binding regions.

    1. Biochemistry and Chemical Biology
    Sudipta Mondal et al.
    Research Article

    Chain-length specific subsets of diacylglycerol (DAG) lipids are proposed to regulate differential physiological responses ranging from signal transduction to modulation of the membrane properties. However, the mechanism or molecular players regulating the subsets of DAG species remains unknown. Here, we uncover the role of a conserved eukaryotic protein family, DISCO-interacting protein 2 (DIP2) as a homeostatic regulator of a chemically distinct subset of DAGs using yeast, fly and mouse models. Genetic and chemical screens along with lipidomics analysis in yeast reveal that DIP2 prevents the toxic accumulation of specific DAGs in the logarithmic growth phase, which otherwise leads to endoplasmic reticulum stress. We also show that the fatty acyl-AMP ligase-like domains of DIP2 are essential for the redirection of the flux of DAG subspecies to storage lipid, triacylglycerols. DIP2 is associated with vacuoles through mitochondria-vacuole contact sites and such modulation of selective DAG abundance by DIP2 is found to be crucial for optimal vacuole membrane fusion and consequently osmoadaptation in yeast. Thus, the study illuminates an unprecedented DAG metabolism route and provides new insights on how cell fine-tunes DAG subspecies for cellular homeostasis and environmental adaptation.