Abstract

Cortical interneurons establish inhibitory microcircuits throughout the neocortex and their dysfunction has been implicated in epilepsy and neuropsychiatric diseases. Developmentally, interneurons migrate from a distal progenitor domain in order to populate the neocortex - a process that occurs at a slower rate in humans than in mice. In this study, we sought to identify factors that regulate the rate of interneuron maturation across the two species. Using embryonic mouse development as a model system, we found that the process of initiating interneuron migration is regulated by blood vessels of the medial ganglionic eminence (MGE), an interneuron progenitor domain. We identified two endothelial cell-derived paracrine factors, SPARC and SerpinE1, that enhance interneuron migration in mouse MGE explants and organotypic cultures. Moreover, pre-treatment of human stem cell-derived interneurons (hSC-interneurons) with SPARC and SerpinE1 prior to transplantation into neonatal mouse cortex enhanced their migration and morphological elaboration in the host cortex. Further, SPARC and SerpinE1-treated hSC-interneurons also exhibited more mature electrophysiological characteristics compared to controls. Overall, our studies suggest a critical role for CNS vasculature in regulating interneuron developmental maturation in both mice and humans.

Data availability

Bulk RNA-seq datasets for HEK293 and HBEC 5i have been uploaded to NCBI GEO under Accession Number: GSE146991

The following data sets were generated

Article and author information

Author details

  1. Matthieu Genestine

    Pathology and cell biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daisy Ambriz

    Pathology and cell biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gregg W Crabtree

    Pathology and cell biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Patrick Dummer

    Pathology & Cell Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Molotkova

    Pathology & Cell Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael Quintero

    Pathology & Cell Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Angeliki Mela

    Pathology & Cell Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Saptarshi Biswas

    Pathology & Cell Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Huijuan Feng

    Systems Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Chaolin Zhang

    Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8310-7537
  11. Peter Canoll

    Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Gunnar Hargus

    Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Dritan Agalliu

    Neurology, Pathology and Cell Biology, Pharmacology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Joseph A Gogos

    Neurology, Pathology and Cell Biology, Pharmacology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Edmund Au

    Pathology and Cell Biology, Columbia University, New York, United States
    For correspondence
    ea2515@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3190-9711

Funding

Whitehall Foundation (2016-12-137)

  • Edmund Au

Irma T. Hirschl Trust

  • Edmund Au

National Institutes of Health (R03MH119443-01)

  • Edmund Au

National Institutes of Health (R01NS117695)

  • Edmund Au

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (AC-AAAZ6451) of Columbia University .

Human subjects: We obtained fetal tissue samples for research following induced termination of pregnancy for maternal indications. Sample collection followed the policies of the Columbia University Irving Medical Center Institutional Review Board. IRB waiver AAAS5541 was obtained for non-human subjects research, deemed medical waste.

Copyright

© 2021, Genestine et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,490
    views
  • 236
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthieu Genestine
  2. Daisy Ambriz
  3. Gregg W Crabtree
  4. Patrick Dummer
  5. Anna Molotkova
  6. Michael Quintero
  7. Angeliki Mela
  8. Saptarshi Biswas
  9. Huijuan Feng
  10. Chaolin Zhang
  11. Peter Canoll
  12. Gunnar Hargus
  13. Dritan Agalliu
  14. Joseph A Gogos
  15. Edmund Au
(2021)
Vascular-derived SPARC and SerpinE1 regulate interneuron tangential migration and maturation
eLife 10:e56063.
https://doi.org/10.7554/eLife.56063

Share this article

https://doi.org/10.7554/eLife.56063

Further reading

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article Updated

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here, we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin 1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration, and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.

    1. Developmental Biology
    Cora Demler, John C Lawlor ... Natasza A Kurpios
    Research Article

    Correct intestinal morphogenesis depends on the early embryonic process of gut rotation, an evolutionarily conserved program in which a straight gut tube elongates and forms into its first loops. However, the gut tube requires guidance to loop in a reproducible manner. The dorsal mesentery (DM) connects the gut tube to the body and directs the lengthening gut into stereotypical loops via left-right (LR) asymmetric cellular and extracellular behavior. The LR asymmetry of the DM also governs blood and lymphatic vessel formation for the digestive tract, which is essential for prenatal organ development and postnatal vital functions including nutrient absorption. Although the genetic LR asymmetry of the DM has been extensively studied, a divider between the left and right DM has yet to be identified. Setting up LR asymmetry for the entire body requires a Lefty1+ midline barrier to separate the two sides of the embryo, without it, embryos have lethal or congenital LR patterning defects. Individual organs including the brain, heart, and gut also have LR asymmetry, and while the consequences of left and right signals mixing are severe or even lethal, organ-specific mechanisms for separating these signals remain poorly understood. Here, we uncover a midline structure composed of a transient double basement membrane, which separates the left and right halves of the embryonic chick DM during the establishment of intestinal and vascular asymmetries. Unlike other basement membranes of the DM, the midline is resistant to disruption by intercalation of Netrin4 (Ntn4). We propose that this atypical midline forms the boundary between left and right sides and functions as a barrier necessary to establish and protect organ asymmetry.