Caenorhabditis elegans processes sensory information to choose between freeloading and self-defense strategies

Abstract

Hydrogen peroxide is the preeminent chemical weapon that organisms use for combat. Individual cells rely on conserved defenses to prevent and repair peroxide-induced damage, but whether similar defenses might be coordinated across cells in animals remains poorly understood. Here, we identify a neuronal circuit in the nematode Caenorhabditis elegans that processes information perceived by two sensory neurons to control the induction of hydrogen peroxide defenses in the organism. We found that catalases produced by Escherichia coli, the nematode's food source, can deplete hydrogen peroxide from the local environment and thereby protect the nematodes. In the presence of E. coli, the nematode's neurons signal via TGFβ-insulin/IGF1 relay to target tissues to repress expression of catalases and other hydrogen peroxide defenses. This adaptive strategy is the first example of a multicellular organism modulating its defenses when it expects to freeload from the protection provided by molecularly orthologous defenses from another species.

Data availability

Aligned mRNA-seq read files were made available under Sequence Read Archive (SRA) SUB7234259. All data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Jodie A Schiffer

    Biology, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Francesco A Servello

    Biology, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. William R Heath

    Biology, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Francis Raj Gandhi Amrit

    Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephanie V Stumbur

    Biology, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthias Eder

    Systems Biology Programme, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Olivier M F Martin

    Systems Biology Programme, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Sean B Johnsen

    Biology, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Julian A Stanley

    Biology, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9193-3791
  10. Hannah Tam

    Biology, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Sarah J Brennan

    Biology, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Natalie G McGowan

    Biology, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Abigail L Vogelaar

    Biology, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Yuyan Xu

    Biology, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. William T Serkin

    Biology, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Arjumand Ghazi

    Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Nicholas Edward Stroustrup

    Systems Biology Programme, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9530-7301
  18. Javier Apfeld

    Biology, Northeastern University, Boston, United States
    For correspondence
    j.apfeld@northeastern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9897-5671

Funding

National Science Foundation (1750065)

  • Javier Apfeld

National Institutes of Health (R01AG051659)

  • Arjumand Ghazi

Northeastern University (Tier 1 award)

  • Javier Apfeld

MEIC Excelencia award (BFU2017-88615-P)

  • Nicholas Edward Stroustrup

the CERCA Programme/Generalitat de Catalunya, and European Research Council under the European Union's Horizon 2020 research and innovation programme (852201)

  • Nicholas Edward Stroustrup

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Oliver Hobert, Howard Hughes Medical Institute, Columbia University, United States

Publication history

  1. Received: February 20, 2020
  2. Accepted: April 21, 2020
  3. Accepted Manuscript published: May 5, 2020 (version 1)
  4. Version of Record published: May 11, 2020 (version 2)

Copyright

© 2020, Schiffer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,507
    Page views
  • 384
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jodie A Schiffer
  2. Francesco A Servello
  3. William R Heath
  4. Francis Raj Gandhi Amrit
  5. Stephanie V Stumbur
  6. Matthias Eder
  7. Olivier M F Martin
  8. Sean B Johnsen
  9. Julian A Stanley
  10. Hannah Tam
  11. Sarah J Brennan
  12. Natalie G McGowan
  13. Abigail L Vogelaar
  14. Yuyan Xu
  15. William T Serkin
  16. Arjumand Ghazi
  17. Nicholas Edward Stroustrup
  18. Javier Apfeld
(2020)
Caenorhabditis elegans processes sensory information to choose between freeloading and self-defense strategies
eLife 9:e56186.
https://doi.org/10.7554/eLife.56186

Further reading

    1. Cell Biology
    2. Developmental Biology
    Ivonne Margarete Sehring et al.
    Research Article

    Successful regeneration requires the coordinated execution of multiple cellular responses to injury. In amputated zebrafish fins, mature osteoblasts dedifferentiate, migrate towards the injury and form proliferative osteogenic blastema cells. We show that osteoblast migration is preceded by cell elongation and alignment along the proximodistal axis, which require actomyosin, but not microtubule turnover. Surprisingly, osteoblast dedifferentiation and migration can be uncoupled. Using pharmacological and genetic interventions, we found that NF-ĸB and retinoic acid signalling regulate dedifferentiation without affecting migration, while the complement system and actomyosin dynamics affect migration but not dedifferentiation. Furthermore, by removing bone at two locations within a fin ray, we established an injury model containing two injury sites. We found that osteoblasts dedifferentiate at and migrate towards both sites, while accumulation of osteogenic progenitor cells and regenerative bone formation only occur at the distal-facing injury. Together, these data indicate that osteoblast dedifferentiation and migration represent generic injury responses that are differentially regulated and can occur independently of each other and of regenerative growth. We conclude that successful fin bone regeneration appears to involve the coordinated execution of generic and regeneration-specific responses of osteoblasts to injury.

    1. Developmental Biology
    2. Neuroscience
    Ashtyn T Wiltbank et al.
    Research Article

    Efficient neurotransmission is essential for organism survival and is enhanced by myelination. However, the genes that regulate myelin and myelinating glial cell development have not been fully characterized. Data from our lab and others demonstrates that cd59, which encodes for a small GPI-anchored glycoprotein, is highly expressed in developing zebrafish, rodent, and human oligodendrocytes (OLs) and Schwann cells (SCs), and that patients with CD59 dysfunction develop neurological dysfunction during early childhood. Yet, the function of Cd59 in the developing nervous system is currently undefined. In this study, we demonstrate that cd59 is expressed in a subset of developing SCs. Using cd59 mutant zebrafish, we show that developing SCs proliferate excessively and nerves may have reduced myelin volume, altered myelin ultrastructure, and perturbed node of Ranvier assembly. Finally, we demonstrate that complement activity is elevated in cd59 mutants and that inhibiting inflammation restores SC proliferation, myelin volume, and nodes of Ranvier to wildtype levels. Together, this work identifies Cd59 and developmental inflammation as key players in myelinating glial cell development, highlighting the collaboration between glia and the innate immune system to ensure normal neural development.