Measuring protein stability in the GroEL chaperonin cage reveals massive destabilization

  1. Ilia Korobko
  2. Hisham Mazal
  3. Gilad Haran
  4. Amnon Horovitz  Is a corresponding author
  1. Weizmann Institute of Science, Israel

Abstract

The thermodynamics of protein folding in bulk solution have been thoroughly investigated for decades. By contrast, measurements of protein substrate stability inside the GroEL/ES chaperonin cage have not been reported. Such measurements require stable encapsulation, i.e. no escape of the substrate into bulk solution during experiments, and a way to perturb protein stability without affecting the chaperonin system itself. Here, by establishing such conditions, we show that protein stability in the chaperonin cage is reduced dramatically by more than 5 kcal mol-1 compared to that in bulk solution. Given that steric confinement alone is stabilizing, our results indicate that hydrophobic and/or electrostatic effects in the cavity are strongly destabilizing. Our findings are consistent with the iterative annealing mechanism of action proposed for the chaperonin GroEL.

Data availability

All data generated or analyses during this study are included in the manuscript file.

Article and author information

Author details

  1. Ilia Korobko

    Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Hisham Mazal

    Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2071-9552
  3. Gilad Haran

    Chemical Physics Department, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1837-9779
  4. Amnon Horovitz

    Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    Amnon.Horovitz@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7952-6790

Funding

United States-Israel Binational Science Foundation (2015170)

  • Amnon Horovitz

Minerva Foundation

  • Amnon Horovitz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Korobko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,494
    views
  • 350
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ilia Korobko
  2. Hisham Mazal
  3. Gilad Haran
  4. Amnon Horovitz
(2020)
Measuring protein stability in the GroEL chaperonin cage reveals massive destabilization
eLife 9:e56511.
https://doi.org/10.7554/eLife.56511

Share this article

https://doi.org/10.7554/eLife.56511