1. Computational and Systems Biology
  2. Immunology and Inflammation
Download icon

Cytotoxic T cells swarm by homotypic chemokine signalling

  1. Jorge Luis Galeano Niño
  2. Sophie V Pageon
  3. Szun S Tay
  4. Feyza Colakoglu
  5. Daryan Kempe
  6. Jack Hywood
  7. Jessica K Mazalo
  8. James Cremasco
  9. Matt A Govendir
  10. Laura F Dagley
  11. Kenneth Hsu
  12. Simone Rizzetto
  13. Jerzy Zieba
  14. Gregory Rice
  15. Victoria Prior
  16. Geraldine M O'Neill
  17. Richard J Williams
  18. David R Nisbet
  19. Belinda Kramer
  20. Andrew I Webb
  21. Fabio Luciani
  22. Mark N Read
  23. Maté Biro  Is a corresponding author
  1. University of New South Wales, Australia
  2. The Walter and Eliza Hall Institute of Medical Research, Australia
  3. The Children's Hospital at Westmead, Australia
  4. University of Waterloo, Canada
  5. Kids Research, Australia
  6. Deakin University, Australia
  7. Australian National University, Australia
  8. University of Sydney, Australia
Research Article
  • Cited 0
  • Views 857
  • Annotations
Cite this article as: eLife 2020;9:e56554 doi: 10.7554/eLife.56554

Abstract

Cytotoxic T lymphocytes (CTLs) are thought to arrive at target sites either via random search or following signals by other leukocytes. Here, we reveal independent emergent behaviour in CTL populations attacking tumour masses. Primary murine CTLs coordinate their migration in a process reminiscent of the swarming observed in neutrophils. CTLs engaging cognate targets accelerate the recruitment of distant T cells through long-range homotypic signalling, in part mediated via the diffusion of chemokines CCL3 and CCL4. Newly arriving CTLs augment the chemotactic signal, further accelerating mass recruitment in a positive feedback loop. Activated effector human T cells and chimeric antigen receptor (CAR) T cells similarly employ intra-population signalling to drive rapid convergence. Thus, CTLs recognising a cognate target can induce a localised mass response by amplifying the direct recruitment of additional T cells independently of other leukocytes.

Article and author information

Author details

  1. Jorge Luis Galeano Niño

    EMBL Australia, Single Molecule Science node, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Sophie V Pageon

    EMBL Australia, Single Molecule Science node, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1701-5551
  3. Szun S Tay

    EMBL Australia, Single Molecule Science node, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0186-8154
  4. Feyza Colakoglu

    EMBL Australia, Single Molecule Science node, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Daryan Kempe

    EMBL Australia, Single Molecule Science node, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Jack Hywood

    Sydney Medical School, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Jessica K Mazalo

    EMBL Australia, Single Molecule Science node, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. James Cremasco

    EMBL Australia, Single Molecule Science node, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Matt A Govendir

    EMBL Australia, Single Molecule Science node, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Laura F Dagley

    Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4171-3712
  11. Kenneth Hsu

    Children's Cancer Research Unit, The Children's Hospital at Westmead, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Simone Rizzetto

    Sydney Medical School, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3881-8759
  13. Jerzy Zieba

    School of Medical Sciences, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  14. Gregory Rice

    Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada
    Competing interests
    The authors declare that no competing interests exist.
  15. Victoria Prior

    Children's Cancer Research Unit, Kids Research, Westmead, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2285-5398
  16. Geraldine M O'Neill

    Children's Cancer Research Unit, The Children's Hospital at Westmead, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  17. Richard J Williams

    School of Medicine, Deakin University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  18. David R Nisbet

    Advanced Biomaterials Lab, Research School of Engineering, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  19. Belinda Kramer

    Children's Cancer Research Unit, The Children's Hospital at Westmead, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  20. Andrew I Webb

    Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  21. Fabio Luciani

    School of Medical Sciences, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  22. Mark N Read

    Charles Perkins Centre, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  23. Maté Biro

    EMBL Australia, Single Molecule Science node, University of New South Wales, Sydney, Australia
    For correspondence
    m.biro@unsw.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5852-3726

Funding

National Sciences and Engineering Research Council Canada (RGPIN 50503-10477 and 50503-10476)

  • Gregory Rice

National Health and Medical Research Council (GNT1135687)

  • David R Nisbet

University of Sydney CoE in Advanced Food Enginomics

  • Mark N Read

EMBL Australia

  • Maté Biro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal breeding and experimentation were conducted in accordance with New South Wales state and Australian federal laws and animal ethics protocols overseen and approved by the University of New South Wales Animal Care and Ethics Committee (ACEC) under protocols 16/83B and 19/133B.

Human subjects: Human peripheral blood mononuclear cells (PBMCs) were obtained from healthy donors after informed consent and were used in experiments under a Human Research Ethics Committee (HREC) approved protocol (Sydney Children's Hospitals Network, LNR/13/SCHN/241).

Reviewing Editor

  1. Satyajit Rath, Indian Institute of Science Education and Research (IISER), India

Publication history

  1. Received: March 2, 2020
  2. Accepted: September 27, 2020
  3. Accepted Manuscript published: October 13, 2020 (version 1)
  4. Accepted Manuscript updated: October 16, 2020 (version 2)

Copyright

© 2020, Galeano Niño et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 857
    Page views
  • 161
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Dennis Segebarth et al.
    Research Article

    Bioimage analysis of fluorescent labels is widely used in the life sciences. Recent advances in deep learning (DL) allow automating time-consuming manual image analysis processes based on annotated training data. However, manual annotation of fluorescent features with a low signal-to-noise ratio is somewhat subjective. Training DL models on subjective annotations may be instable or yield biased models. In turn, these models may be unable to reliably detect biological effects. An analysis pipeline integrating data annotation, ground truth estimation, and model training can mitigate this risk. To evaluate this integrated process, we compared different DL-based analysis approaches. With data from two model organisms (mice, zebrafish) and five laboratories, we show that ground truth estimation from multiple human annotators helps to establish objectivity in fluorescent feature annotations. Furthermore, ensembles of multiple models trained on the estimated ground truth establish reliability and validity. Our research provides guidelines for reproducible DL-based bioimage analyses.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Enrico Sandro Colizzi et al.
    Research Article

    At the origin of multicellularity, cells may have evolved aggregation in response to predation, for functional specialisation or to allow large-scale integration of environmental cues. These group-level properties emerged from the interactions between cells in a group, and determined the selection pressures experienced by these cells. We investigate the evolution of multicellularity with an evolutionary model where cells search for resources by chemotaxis in a shallow, noisy gradient. Cells can evolve their adhesion to others in a periodically changing environment, where a cell's fitness solely depends on its distance from the gradient source. We show that multicellular aggregates evolve because they perform chemotaxis more efficiently than single cells. Only when the environment changes too frequently, a unicellular state evolves which relies on cell dispersal. Both strategies prevent the invasion of the other through interference competition, creating evolutionary bi-stability. Therefore, collective behaviour can be an emergent selective driver for undifferentiated multicellularity.