Genome streamlining in a minute herbivore that manipulates its host plant

  1. Robert Greenhalgh
  2. Wannes Dermauw  Is a corresponding author
  3. Joris J Glas
  4. Stephane Rombauts
  5. Nicky Wybouw
  6. Jainy Thomas
  7. Juan M Alba
  8. Ellen J Pritham
  9. Saioa Legarrea
  10. René Feyereisen
  11. Yves Van de Peer
  12. Thomas Van Leeuwen
  13. Richard M Clark  Is a corresponding author
  14. Merijn R Kant  Is a corresponding author
  1. University of Utah, United States
  2. Ghent University, Belgium
  3. University of Amsterdam, Netherlands
  4. University of Utah School of Medicine, United States
  5. University of Copenhagen, Denmark

Abstract

The tomato russet mite, Aculops lycopersici, is among the smallest animals on earth. It is a worldwide pest on tomato and can potently suppress the host's natural resistance. We sequenced its genome, the first of an eriophyoid, and explored whether there are genomic features associated with the mite's minute size and lifestyle. At only 32.5 Mb, the genome is the smallest yet reported for any arthropod and, reminiscent of microbial eukaryotes, exceptionally streamlined. It has few transposable elements, tiny intergenic regions, and is remarkably intron-poor, as more than 80% of coding genes are intronless. Furthermore, in accordance with ecological specialization theory, this defense-suppressing herbivore has extremely reduced environmental response gene families such as those involved in chemoreception and detoxification. Other losses associate with this species' highly derived body plan. Our findings accelerate the understanding of evolutionary forces underpinning metazoan life at the limits of small physical and genome size.

Data availability

The genomic and 454 transcriptomic datasets generated by this project are available under BioProject accessions PRJNA588358 and PRJNA588365, respectively; the Illumina transcriptome data are available under BioProject accession PRJNA588358. This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession WNKI00000000. The version described in this paper is version WNKI01000000. Additional datasets are hosted by the Online Resource for Community Annotation of Eukaryotes (ORCAE) at https://bioinformatics.psb.ugent.be/orcae/, where the annotation can be viewed and de novo transcriptomes (Illumina and 454) can be downloaded.

The following data sets were generated

Article and author information

Author details

  1. Robert Greenhalgh

    School of Biological Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2816-3154
  2. Wannes Dermauw

    Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
    For correspondence
    wannes.dermauw@ugent.be
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4612-8969
  3. Joris J Glas

    Evolutionary and Population Biology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  4. Stephane Rombauts

    Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
    Competing interests
    No competing interests declared.
  5. Nicky Wybouw

    Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
    Competing interests
    No competing interests declared.
  6. Jainy Thomas

    Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  7. Juan M Alba

    Evolutionary and Population Biology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4822-9827
  8. Ellen J Pritham

    Human Genetics, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  9. Saioa Legarrea

    Evolutionary and Population Biology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9127-2794
  10. René Feyereisen

    University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9560-571X
  11. Yves Van de Peer

    Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4327-3730
  12. Thomas Van Leeuwen

    Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  13. Richard M Clark

    Department of Biology, University of Utah, Salt Lake City, United States
    For correspondence
    clark@biology.utah.edu
    Competing interests
    No competing interests declared.
  14. Merijn R Kant

    Evolutionary and Population Biology, University of Amsterdam, Amsterdam, Netherlands
    For correspondence
    M.Kant@uva.nl
    Competing interests
    Merijn R Kant, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2524-8195

Funding

Netherlands Organization for Scientific Research (STW-VIDI/13492,STW-GAP/13550)

  • Merijn R Kant

USA National Science Foundation (1457346)

  • Richard M Clark

European Union Horizon 2020 research and innovation program (772026-POLYADAPT)

  • Thomas Van Leeuwen

Research Foundation Flanders (1274917N)

  • Wannes Dermauw

National Institutes of Health (T32GM007464)

  • Robert Greenhalgh

Research Foundation Flanders (12T9818N)

  • Nicky Wybouw

European Union Horizon 2020 research and innovation program (773902-SuperPests)

  • Thomas Van Leeuwen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Greenhalgh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,942
    views
  • 686
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robert Greenhalgh
  2. Wannes Dermauw
  3. Joris J Glas
  4. Stephane Rombauts
  5. Nicky Wybouw
  6. Jainy Thomas
  7. Juan M Alba
  8. Ellen J Pritham
  9. Saioa Legarrea
  10. René Feyereisen
  11. Yves Van de Peer
  12. Thomas Van Leeuwen
  13. Richard M Clark
  14. Merijn R Kant
(2020)
Genome streamlining in a minute herbivore that manipulates its host plant
eLife 9:e56689.
https://doi.org/10.7554/eLife.56689

Share this article

https://doi.org/10.7554/eLife.56689

Further reading

    1. Ecology
    2. Evolutionary Biology
    Vendula Bohlen Šlechtová, Tomáš Dvořák ... Joerg Bohlen
    Research Article

    Eurasia has undergone substantial tectonic, geological, and climatic changes throughout the Cenozoic, primarily associated with tectonic plate collisions and a global cooling trend. The evolution of present-day biodiversity unfolded in this dynamic environment, characterised by intricate interactions of abiotic factors. However, comprehensive, large-scale reconstructions illustrating the extent of these influences are lacking. We reconstructed the evolutionary history of the freshwater fish family Nemacheilidae across Eurasia and spanning most of the Cenozoic on the base of 471 specimens representing 279 species and 37 genera plus outgroup samples. Molecular phylogeny using six genes uncovered six major clades within the family, along with numerous unresolved taxonomic issues. Dating of cladogenetic events and ancestral range estimation traced the origin of Nemacheilidae to Indochina around 48 mya. Subsequently, one branch of Nemacheilidae colonised eastern, central, and northern Asia, as well as Europe, while another branch expanded into the Burmese region, the Indian subcontinent, the Near East, and northeast Africa. These expansions were facilitated by tectonic connections, favourable climatic conditions, and orogenic processes. Conversely, aridification emerged as the primary cause of extinction events. Our study marks the first comprehensive reconstruction of the evolution of Eurasian freshwater biodiversity on a continental scale and across deep geological time.

    1. Evolutionary Biology
    Ljiljana Mihajlovic, Bharat Ravi Iyengar ... Yolanda Schaerli
    Research Article

    Gene duplication drives evolution by providing raw material for proteins with novel functions. An influential hypothesis by Ohno (1970) posits that gene duplication helps genes tolerate new mutations and thus facilitates the evolution of new phenotypes. Competing hypotheses argue that deleterious mutations will usually inactivate gene duplicates too rapidly for Ohno’s hypothesis to work. We experimentally tested Ohno’s hypothesis by evolving one or exactly two copies of a gene encoding a fluorescent protein in Escherichia coli through several rounds of mutation and selection. We analyzed the genotypic and phenotypic evolutionary dynamics of the evolving populations through high-throughput DNA sequencing, biochemical assays, and engineering of selected variants. In support of Ohno’s hypothesis, populations carrying two gene copies displayed higher mutational robustness than those carrying a single gene copy. Consequently, the double-copy populations experienced relaxed purifying selection, evolved higher phenotypic and genetic diversity, carried more mutations and accumulated combinations of key beneficial mutations earlier. However, their phenotypic evolution was not accelerated, possibly because one gene copy rapidly became inactivated by deleterious mutations. Our work provides an experimental platform to test models of evolution by gene duplication, and it supports alternatives to Ohno’s hypothesis that point to the importance of gene dosage.