TMAO, a seafood-derived molecule, produces diuresis and reduces mortality in heart failure rats

  1. Marta Gawrys-Kopczynska
  2. Marek Konop
  3. Klaudia Maksymiuk
  4. Katarzyna Kraszewska
  5. Ladislav Derzsi
  6. Krzysztof Sozanski
  7. Robert Holyst
  8. Marta Pilz
  9. Emilia Samborowska
  10. Leszek Dobrowolski
  11. Kinga Jaworska
  12. Izabella Mogilnicka
  13. Marcin Ufnal  Is a corresponding author
  1. Medical University of Warsaw, Poland
  2. Institute of Physical Chemistry, Polish Academy of Sciences, Poland
  3. Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Poland
  4. M Mossakowski Medical Research Centre, Polish Academy of Sciences, Poland

Abstract

Trimethylamine-oxide (TMAO) is present in seafood which is considered to be beneficial for health. Deep-water animals accumulate TMAO to protect proteins, such as lactate dehydrogenase (LDH), against hydrostatic pressure stress (HPS). We hypothesized that TMAO exerts beneficial effects on the circulatory system and protects cardiac LDH exposed to HPS produced by the contracting heart. Male, Sprague-Dawley and Spontaneously-Hypertensive-Heart-Failure (SHHF) rats were treated orally with either water (control) or TMAO. In vitro, LDH with or without TMAO was exposed to HPS and was evaluated using fluorescence correlation spectroscopy. TMAO-treated rats showed higher diuresis and natriuresis, lower arterial pressure and plasma NT-proBNP. Survival in SHHF-control was 66% vs 100% in SHHF-TMAO. In vitro, exposure of LDH to HPS with or without TMAO did not affect protein structure. In conclusion, TMAO reduced mortality in SHHF, which was associated with diuretic, natriuretic and hypotensive effects. HPS and TMAO did not affect LDH protein structure.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures and tables.

Article and author information

Author details

  1. Marta Gawrys-Kopczynska

    Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  2. Marek Konop

    Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  3. Klaudia Maksymiuk

    Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  4. Katarzyna Kraszewska

    Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  5. Ladislav Derzsi

    Soft Condensed Matter, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  6. Krzysztof Sozanski

    Soft Condensed Matter, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  7. Robert Holyst

    Soft Condensed Matter, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  8. Marta Pilz

    Soft Condensed Matter, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  9. Emilia Samborowska

    Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  10. Leszek Dobrowolski

    Department of Renal and Body Fluid Physiology, M Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  11. Kinga Jaworska

    Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  12. Izabella Mogilnicka

    Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  13. Marcin Ufnal

    Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
    For correspondence
    mufnal@wum.edu.pl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0088-8284

Funding

Narodowe Centrum Nauki (2018/31/B/NZ5/00038.)

  • Marcin Ufnal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The study was performed according to Directive 2010/63 EU on the protection of animals used for scientific purposes and approved by the Local Bioethical Committee in Warsaw (permission:100/2016 and 098/2019).

Reviewing Editor

  1. Arduino A Mangoni, Flinders Medical Centre, Australia

Publication history

  1. Received: March 19, 2020
  2. Accepted: June 7, 2020
  3. Accepted Manuscript published: June 8, 2020 (version 1)
  4. Version of Record published: July 3, 2020 (version 2)

Copyright

© 2020, Gawrys-Kopczynska et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,596
    Page views
  • 234
    Downloads
  • 24
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marta Gawrys-Kopczynska
  2. Marek Konop
  3. Klaudia Maksymiuk
  4. Katarzyna Kraszewska
  5. Ladislav Derzsi
  6. Krzysztof Sozanski
  7. Robert Holyst
  8. Marta Pilz
  9. Emilia Samborowska
  10. Leszek Dobrowolski
  11. Kinga Jaworska
  12. Izabella Mogilnicka
  13. Marcin Ufnal
(2020)
TMAO, a seafood-derived molecule, produces diuresis and reduces mortality in heart failure rats
eLife 9:e57028.
https://doi.org/10.7554/eLife.57028

Further reading

    1. Genetics and Genomics
    2. Medicine
    Joshua K Park, Shantanu Bafna ... Ron Do
    Research Article

    Background: Causality between plasma triglyceride (TG) levels and atherosclerotic cardiovascular disease (ASCVD) risk remains controversial despite more than four decades of study and two recent landmark trials, STRENGTH and REDUCE-IT. Further unclear is the association between TG levels and non-atherosclerotic diseases across organ systems.

    Methods: Here, we conducted a phenome-wide, two-sample Mendelian randomization (MR) analysis using inverse-variance weighted (IVW) regression to systematically infer the causal effects of plasma TG levels on 2,600 disease traits in the European ancestry population of UK Biobank. For replication, we externally tested 221 nominally significant associations (p < 0.05) in an independent cohort from FinnGen. To account for potential horizontal pleiotropy and the influence of invalid instrumental variables, we performed sensitivity analyses using MR-Egger regression, weighted median estimator, and MR-PRESSO. Finally, we used multivariable MR controlling for correlated lipid fractions to distinguish the independent effect of plasma TG levels.

    Results: Our results identified 7 disease traits reaching Bonferroni-corrected significance in both the discovery (p < 1.92 × 10-5) and replication analyses (p < 2.26 × 10-4), suggesting a causal relationship between plasma TG levels and ASCVDs, including coronary artery disease (OR 1.33, 95% CI 1.24-1.43, p = 2.47 × 10-13). We also identified 12 disease traits that were Bonferroni-significant in the discovery or replication analysis and at least nominally significant in the other analysis (p < 0.05), identifying plasma TG levels as a novel potential risk factor for 9 non-ASCVD diseases, including uterine leiomyoma (OR 1.19, 95% CI 1.10-1.29, p = 1.17 × 10-5).

    Conclusions: Taking a phenome-wide, two-sample MR approach, we identified causal associations between plasma TG levels and 19 disease traits across organ systems. Our findings suggest unrealized drug repurposing opportunities or adverse effects related to approved and emerging TG-lowering agents, as well as mechanistic insights for future studies.

    Funding: RD is supported by the National Institute of General Medical Sciences of the National Institutes of Health (NIH) (R35-GM124836) and the National Heart, Lung, and Blood Institute of the NIH (R01-HL139865 and R01-HL155915).

    1. Medicine
    Astha Thakkar, Kith Pradhan ... Balazs Halmos
    Research Article

    Background: Cancer patients show increased morbidity with COVID-19 and need effective immunization strategies. Many healthcare regulatory agencies recommend administering 'booster' doses of COVID-19 vaccines beyond the standard 2-dose series, for this group of patients. Therefore, studying the efficacy of these additional vaccine doses against SARS-CoV-2 and variants of concern is of utmost importance in this immunocompromised patient population.

    Methods: We conducted a prospective single arm clinical trial enrolling patients with cancer that had received two doses of mRNA or one dose of AD26.CoV2.S vaccine and administered a 3rd dose of mRNA vaccine. We further enrolled patients that had no or low responses to three mRNA COVID vaccines and assessed the efficacy of a 4th dose of mRNA vaccine. Efficacy was assessed by changes in anti-spike antibody, T-cell activity and neutralization activity were again assessed at baseline and 4 weeks.

    Results: We demonstrate that a 3rd dose of COVID-19 vaccine leads to seroconversion in 57% of patients that were seronegative after primary vaccination series. The immune response is durable as assessed by anti-S antibody titers, T-cell activity and neutralization activity against wild-type SARS-CoV2 and BA1.1.529 at 6 months of follow up. A subset of severely immunocompromised hematologic malignancy patients that were unable to mount an adequate immune response (titer <1000 AU/mL) after the 3rd dose and were treated with a 4th dose in a prospective clinical trial which led to adequate immune-boost in 67% of patients. Low baseline IgM levels and CD19 counts were associated with inadequate seroconversion. Booster doses induced limited neutralization activity against the Omicron variant.

    Conclusions: These results indicate that 3rd dose of COVID vaccine induces durable immunity in cancer patients and an additional dose can further stimulate immunity in a subset of patients with inadequate response.

    Funding: Leukemia lymphoma society, National Cancer Institute.

    Clinical trial identifier: NCT05016622.