TMAO, a seafood-derived molecule, produces diuresis and reduces mortality in heart failure rats

  1. Marta Gawrys-Kopczynska
  2. Marek Konop
  3. Klaudia Maksymiuk
  4. Katarzyna Kraszewska
  5. Ladislav Derzsi
  6. Krzysztof Sozanski
  7. Robert Holyst
  8. Marta Pilz
  9. Emilia Samborowska
  10. Leszek Dobrowolski
  11. Kinga Jaworska
  12. Izabella Mogilnicka
  13. Marcin Ufnal  Is a corresponding author
  1. Medical University of Warsaw, Poland
  2. Institute of Physical Chemistry, Polish Academy of Sciences, Poland
  3. Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Poland
  4. M Mossakowski Medical Research Centre, Polish Academy of Sciences, Poland

Abstract

Trimethylamine-oxide (TMAO) is present in seafood which is considered to be beneficial for health. Deep-water animals accumulate TMAO to protect proteins, such as lactate dehydrogenase (LDH), against hydrostatic pressure stress (HPS). We hypothesized that TMAO exerts beneficial effects on the circulatory system and protects cardiac LDH exposed to HPS produced by the contracting heart. Male, Sprague-Dawley and Spontaneously-Hypertensive-Heart-Failure (SHHF) rats were treated orally with either water (control) or TMAO. In vitro, LDH with or without TMAO was exposed to HPS and was evaluated using fluorescence correlation spectroscopy. TMAO-treated rats showed higher diuresis and natriuresis, lower arterial pressure and plasma NT-proBNP. Survival in SHHF-control was 66% vs 100% in SHHF-TMAO. In vitro, exposure of LDH to HPS with or without TMAO did not affect protein structure. In conclusion, TMAO reduced mortality in SHHF, which was associated with diuretic, natriuretic and hypotensive effects. HPS and TMAO did not affect LDH protein structure.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures and tables.

Article and author information

Author details

  1. Marta Gawrys-Kopczynska

    Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  2. Marek Konop

    Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  3. Klaudia Maksymiuk

    Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  4. Katarzyna Kraszewska

    Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  5. Ladislav Derzsi

    Soft Condensed Matter, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  6. Krzysztof Sozanski

    Soft Condensed Matter, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  7. Robert Holyst

    Soft Condensed Matter, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  8. Marta Pilz

    Soft Condensed Matter, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  9. Emilia Samborowska

    Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  10. Leszek Dobrowolski

    Department of Renal and Body Fluid Physiology, M Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  11. Kinga Jaworska

    Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  12. Izabella Mogilnicka

    Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  13. Marcin Ufnal

    Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
    For correspondence
    mufnal@wum.edu.pl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0088-8284

Funding

Narodowe Centrum Nauki (2018/31/B/NZ5/00038.)

  • Marcin Ufnal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The study was performed according to Directive 2010/63 EU on the protection of animals used for scientific purposes and approved by the Local Bioethical Committee in Warsaw (permission:100/2016 and 098/2019).

Copyright

© 2020, Gawrys-Kopczynska et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,568
    views
  • 283
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marta Gawrys-Kopczynska
  2. Marek Konop
  3. Klaudia Maksymiuk
  4. Katarzyna Kraszewska
  5. Ladislav Derzsi
  6. Krzysztof Sozanski
  7. Robert Holyst
  8. Marta Pilz
  9. Emilia Samborowska
  10. Leszek Dobrowolski
  11. Kinga Jaworska
  12. Izabella Mogilnicka
  13. Marcin Ufnal
(2020)
TMAO, a seafood-derived molecule, produces diuresis and reduces mortality in heart failure rats
eLife 9:e57028.
https://doi.org/10.7554/eLife.57028

Share this article

https://doi.org/10.7554/eLife.57028

Further reading

    1. Medicine
    Jeong-Oh Shin, Jong-Bin Lee ... Jin-Woo Kim
    Research Article

    This study investigates the effects of two parathyroid hormone (PTH) analogs, rhPTH(1-34) and dimeric R25CPTH(1-34), on bone regeneration and osseointegration in a postmenopausal osteoporosis model using beagle dogs. Twelve osteoporotic female beagles were subjected to implant surgeries and assigned to one of three groups: control, rhPTH(1-34), or dimeric R25CPTH(1-34). Bone regeneration and osseointegration were evaluated after 10 weeks using micro-computed tomographic (micro-CT), histological analyses, and serum biochemical assays. Results showed that the rhPTH(1-34) group demonstrated superior improvements in bone mineral density, trabecular architecture, and osseointegration compared to controls, while the dimeric R25CPTH(1-34) group exhibited similar, though slightly less pronounced, anabolic effects. Histological and TRAP assays indicated both PTH analogs significantly enhanced bone regeneration, especially in artificially created bone defects. The findings suggest that both rhPTH(1-34) and dimeric R25CPTH(1-34) hold potential as therapeutic agents for promoting bone regeneration and improving osseointegration around implants in osteoporotic conditions, with implications for their use in bone-related pathologies and reconstructive surgeries.

    1. Medicine
    2. Neuroscience
    Sophie Leclercq, Hany Ahmed ... Nathalie Delzenne
    Research Article

    Background:

    Alcohol use disorder (AUD) is a global health problem with limited therapeutic options. The biochemical mechanisms that lead to this disorder are not yet fully understood, and in this respect, metabolomics represents a promising approach to decipher metabolic events related to AUD. The plasma metabolome contains a plethora of bioactive molecules that reflects the functional changes in host metabolism but also the impact of the gut microbiome and nutritional habits.

    Methods:

    In this study, we investigated the impact of severe AUD (sAUD), and of a 3-week period of alcohol abstinence, on the blood metabolome (non-targeted LC-MS metabolomics analysis) in 96 sAUD patients hospitalized for alcohol withdrawal.

    Results:

    We found that the plasma levels of different lipids ((lyso)phosphatidylcholines, long-chain fatty acids), short-chain fatty acids (i.e. 3-hydroxyvaleric acid) and bile acids were altered in sAUD patients. In addition, several microbial metabolites, including indole-3-propionic acid, p-cresol sulfate, hippuric acid, pyrocatechol sulfate, and metabolites belonging to xanthine class (paraxanthine, theobromine and theophylline) were sensitive to alcohol exposure and alcohol withdrawal. 3-Hydroxyvaleric acid, caffeine metabolites (theobromine, paraxanthine, and theophylline) and microbial metabolites (hippuric acid and pyrocatechol sulfate) were correlated with anxiety, depression and alcohol craving. Metabolomics analysis in postmortem samples of frontal cortex and cerebrospinal fluid of those consuming a high level of alcohol revealed that those metabolites can be found also in brain tissue.

    Conclusions:

    Our data allow the identification of neuroactive metabolites, from interactions between food components and microbiota, which may represent new targets arising in the management of neuropsychiatric diseases such as sAUD.

    Funding:

    Gut2Behave project was initiated from ERA-NET NEURON network (Joint Transnational Call 2019) and was financed by Academy of Finland, French National Research Agency (ANR-19-NEUR-0003-03) and the Fonds de la Recherche Scientifique (FRS-FNRS; PINT-MULTI R.8013.19, Belgium). Metabolomics analysis of the TSDS samples was supported by grant from the Finnish Foundation for Alcohol Studies.