shinyDepMap, a tool to identify targetable cancer genes and their functional connections from Cancer Dependency Map data
Abstract
Individual cancers rely on distinct essential genes for their survival. The Cancer Dependency Map (DepMap) is an ongoing project to uncover these gene dependencies in hundreds of cancer cell lines. To make this drug discovery resource more accessible to the scientific community we built an easy-to-use browser, shinyDepMap (https://labsyspharm.shinyapps.io/depmap). shinyDepMap combines CRISPR and shRNA data to determine, for each gene, the growth reduction caused by knockout/knockdown and the selectivity of this effect across cell lines. The tool also clusters genes with similar dependencies, revealing functional relationships. shinyDepMap can be used to 1) predict the efficacy and selectivity of drugs targeting particular genes; 2) identify maximally sensitive cell lines for testing a drug; 3) target hop, i.e., navigate from an undruggable protein with the desired selectivity profile, such as an activated oncogene, to more druggable targets with a similar profile; and 4) identify novel pathways driving cancer cell growth and survival.
Data availability
Data files have been provided for Figures 1, 3, 4, and 5 on FigShare: https://figshare.com/projects/shinyDepMap_Source_Data/97382 (DOIs: 10.6084/m9.figshare.13653251.v1, 10.6084/m9.figshare.13653257.v1, 10.6084/m9.figshare.13653260.v1, 10.6084/m9.figshare.13653266.v1, 10.6084/m9.figshare.13653272.v1, 10.6084/m9.figshare.13653278.v1, 10.6084/m9.figshare.13653281.v2)
-
shinyDepMap - Source Data 1FigShare, doi:10.6084/m9.figshare.13653251.
-
shinyDepMap - Source Data 2FigShare, doi:10.6084/m9.figshare.13653257.v1.
-
shinyDepMap - Source Data 3FigShare, doi:10.6084/m9.figshare.13653260.v1.
-
shinyDepMap - Source Data 4FigShare, doi:10.6084/m9.figshare.13653266.v1.
-
shinyDepMap - Source Data 5FigShare, doi:10.6084/m9.figshare.13653272.v1.
-
shinyDepMap - Source Data 6FigShare, doi:10.6084/m9.figshare.13653278.v1.
-
shinyDepMap - Source Data 7FigShare, doi:10.6084/m9.figshare.13653281.v2.
Article and author information
Author details
Funding
Japan Society for the Promotion of Science (H29-814)
- Kenichi Shimada
National Institute of General Medical Sciences (R35GM131753)
- Timothy J Mitchison
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Erica A Golemis, Fox Chase Cancer Center, United States
Publication history
- Received: March 20, 2020
- Accepted: February 6, 2021
- Accepted Manuscript published: February 8, 2021 (version 1)
- Accepted Manuscript updated: February 10, 2021 (version 2)
- Version of Record published: March 2, 2021 (version 3)
Copyright
© 2021, Shimada et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 16,042
- Page views
-
- 1,014
- Downloads
-
- 16
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Cell Biology
The actin cytoskeleton is tightly controlled by RhoGTPases, actin binding-proteins and nucleation-promoting factors to perform fundamental cellular functions. We have previously shown that ERK3, an atypical MAPK, controls IL-8 production and chemotaxis (Bogueka et al., 2020). Here, we show in human cells that ERK3 directly acts as a guanine nucleotide exchange factor for CDC42 and phosphorylates the ARP3 subunit of the ARP2/3 complex at S418 to promote filopodia formation and actin polymerization, respectively. Consistently, depletion of ERK3 prevented both basal and EGF-dependent RAC1 and CDC42 activation, maintenance of F-actin content, filopodia formation, and epithelial cell migration. Further, ERK3 protein bound directly to the purified ARP2/3 complex and augmented polymerization of actin in vitro. ERK3 kinase activity was required for the formation of actin-rich protrusions in mammalian cells. These findings unveil a fundamentally unique pathway employed by cells to control actin-dependent cellular functions.
-
- Cancer Biology
- Cell Biology
The trapping of Poly-ADP-ribose polymerase (PARP) on DNA caused by PARP inhibitors (PARPi) triggers acute DNA replication stress and synthetic lethality (SL) in BRCA2-deficient cells. Hence, DNA damage is accepted as a prerequisite for SL in BRCA2-deficient cells. In contrast, here we show that inhibiting ROCK in BRCA2-deficient cells triggers SL independently from acute replication stress. Such SL is preceded by polyploidy and binucleation resulting from cytokinesis failure. Such initial mitosis abnormalities are followed by other M phase defects, including anaphase bridges and abnormal mitotic figures associated with multipolar spindles, supernumerary centrosomes and multinucleation. SL was also triggered by inhibiting Citron Rho-interacting kinase, another enzyme that, similarly to ROCK, regulates cytokinesis. Together, these observations demonstrate that cytokinesis failure triggers mitotic abnormalities and SL in BRCA2-deficient cells. Furthermore, the prevention of mitotic entry by depletion of Early mitotic inhibitor 1 (EMI1) augmented the survival of BRCA2-deficient cells treated with ROCK inhibitors, thus reinforcing the association between M phase and cell death in BRCA2-deficient cells. This novel SL differs from the one triggered by PARPi and uncovers mitosis as an Achilles heel of BRCA2-deficient cells.