shinyDepMap, a tool to identify targetable cancer genes and their functional connections from Cancer Dependency Map data

  1. Kenichi Shimada  Is a corresponding author
  2. John A Bachman
  3. Jeremy L Muhlich
  4. Timothy J Mitchison
  1. Harvard Medical School, United States

Abstract

Individual cancers rely on distinct essential genes for their survival. The Cancer Dependency Map (DepMap) is an ongoing project to uncover these gene dependencies in hundreds of cancer cell lines. To make this drug discovery resource more accessible to the scientific community we built an easy-to-use browser, shinyDepMap (https://labsyspharm.shinyapps.io/depmap). shinyDepMap combines CRISPR and shRNA data to determine, for each gene, the growth reduction caused by knockout/knockdown and the selectivity of this effect across cell lines. The tool also clusters genes with similar dependencies, revealing functional relationships. shinyDepMap can be used to 1) predict the efficacy and selectivity of drugs targeting particular genes; 2) identify maximally sensitive cell lines for testing a drug; 3) target hop, i.e., navigate from an undruggable protein with the desired selectivity profile, such as an activated oncogene, to more druggable targets with a similar profile; and 4) identify novel pathways driving cancer cell growth and survival.

Data availability

Data files have been provided for Figures 1, 3, 4, and 5 on FigShare: https://figshare.com/projects/shinyDepMap_Source_Data/97382 (DOIs: 10.6084/m9.figshare.13653251.v1, 10.6084/m9.figshare.13653257.v1, 10.6084/m9.figshare.13653260.v1, 10.6084/m9.figshare.13653266.v1, 10.6084/m9.figshare.13653272.v1, 10.6084/m9.figshare.13653278.v1, 10.6084/m9.figshare.13653281.v2)

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Kenichi Shimada

    Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, United States
    For correspondence
    kenichi_shimada@hms.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8540-9785
  2. John A Bachman

    Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    John A Bachman, has received consulting fees from Two Six Labs, LLC.
  3. Jeremy L Muhlich

    Laboratory of Systems Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0811-637X
  4. Timothy J Mitchison

    Department of Systems Biology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7781-1897

Funding

Japan Society for the Promotion of Science (H29-814)

  • Kenichi Shimada

National Institute of General Medical Sciences (R35GM131753)

  • Timothy J Mitchison

National Cancer Institute (U54-CA225088)

  • Jeremy L Muhlich

Defense Advanced Research Projects Agency (W911NF-15-1-0544)

  • John A Bachman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Shimada et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 22,966
    views
  • 1,341
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kenichi Shimada
  2. John A Bachman
  3. Jeremy L Muhlich
  4. Timothy J Mitchison
(2021)
shinyDepMap, a tool to identify targetable cancer genes and their functional connections from Cancer Dependency Map data
eLife 10:e57116.
https://doi.org/10.7554/eLife.57116

Share this article

https://doi.org/10.7554/eLife.57116

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark A LaBarge
    Research Article Updated

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55 y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression variance of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Cancer Biology
    Yiwei Huang, Gujie Wu ... Cheng Zhan
    Research Article

    Chemotherapy is widely used to treat lung adenocarcinoma (LUAD) patients comprehensively. Considering the limitations of chemotherapy due to drug resistance and other issues, it is crucial to explore the impact of chemotherapy and immunotherapy on these aspects. In this study, tumor samples from nine LUAD patients, of which four only received surgery and five received neoadjuvant chemotherapy, were subjected to scRNA-seq analysis. In vitro and in vivo assays, including flow cytometry, immunofluorescence, Seahorse assay, and tumor xenograft models, were carried out to validate our findings. A total of 83,622 cells were enrolled for subsequent analyses. The composition of cell types exhibited high heterogeneity across different groups. Functional enrichment analysis revealed that chemotherapy drove significant metabolic reprogramming in tumor cells and macrophages. We identified two subtypes of macrophages: Anti-mac cells (CD45+CD11b+CD86+) and Pro-mac cells (CD45+CD11b+ARG +) and sorted them by flow cytometry. The proportion of Pro-mac cells in LUAD tissues increased significantly after neoadjuvant chemotherapy. Pro-mac cells promote tumor growth and angiogenesis and also suppress tumor immunity. Moreover, by analyzing the remodeling of T and B cells induced by neoadjuvant therapy, we noted that chemotherapy ignited a relatively more robust immune cytotoxic response toward tumor cells. Our study demonstrates that chemotherapy induces metabolic reprogramming within the tumor microenvironment of LUAD, particularly affecting the function and composition of immune cells such as macrophages and T cells. We believe our findings will offer insight into the mechanisms of drug resistance and provide novel therapeutic targets for LUAD in the future.