shinyDepMap, a tool to identify targetable cancer genes and their functional connections from Cancer Dependency Map data
Abstract
Individual cancers rely on distinct essential genes for their survival. The Cancer Dependency Map (DepMap) is an ongoing project to uncover these gene dependencies in hundreds of cancer cell lines. To make this drug discovery resource more accessible to the scientific community we built an easy-to-use browser, shinyDepMap (https://labsyspharm.shinyapps.io/depmap). shinyDepMap combines CRISPR and shRNA data to determine, for each gene, the growth reduction caused by knockout/knockdown and the selectivity of this effect across cell lines. The tool also clusters genes with similar dependencies, revealing functional relationships. shinyDepMap can be used to 1) predict the efficacy and selectivity of drugs targeting particular genes; 2) identify maximally sensitive cell lines for testing a drug; 3) target hop, i.e., navigate from an undruggable protein with the desired selectivity profile, such as an activated oncogene, to more druggable targets with a similar profile; and 4) identify novel pathways driving cancer cell growth and survival.
Data availability
Data files have been provided for Figures 1, 3, 4, and 5 on FigShare: https://figshare.com/projects/shinyDepMap_Source_Data/97382 (DOIs: 10.6084/m9.figshare.13653251.v1, 10.6084/m9.figshare.13653257.v1, 10.6084/m9.figshare.13653260.v1, 10.6084/m9.figshare.13653266.v1, 10.6084/m9.figshare.13653272.v1, 10.6084/m9.figshare.13653278.v1, 10.6084/m9.figshare.13653281.v2)
-
shinyDepMap - Source Data 1FigShare, doi:10.6084/m9.figshare.13653251.
-
shinyDepMap - Source Data 2FigShare, doi:10.6084/m9.figshare.13653257.v1.
-
shinyDepMap - Source Data 3FigShare, doi:10.6084/m9.figshare.13653260.v1.
-
shinyDepMap - Source Data 4FigShare, doi:10.6084/m9.figshare.13653266.v1.
-
shinyDepMap - Source Data 5FigShare, doi:10.6084/m9.figshare.13653272.v1.
-
shinyDepMap - Source Data 6FigShare, doi:10.6084/m9.figshare.13653278.v1.
-
shinyDepMap - Source Data 7FigShare, doi:10.6084/m9.figshare.13653281.v2.
Article and author information
Author details
Funding
Japan Society for the Promotion of Science (H29-814)
- Kenichi Shimada
National Institute of General Medical Sciences (R35GM131753)
- Timothy J Mitchison
National Cancer Institute (U54-CA225088)
- Jeremy L Muhlich
Defense Advanced Research Projects Agency (W911NF-15-1-0544)
- John A Bachman
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Shimada et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 22,614
- views
-
- 1,326
- downloads
-
- 58
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.
-
- Cancer Biology
A high density of tumor-associated macrophages (TAMs) is associated with poorer prognosis and survival in breast cancer patients. Recent studies have shown that lipid accumulation in TAMs can promote tumor growth and metastasis in various models. However, the specific molecular mechanisms that drive lipid accumulation and tumor progression in TAMs remain largely unknown. Herein, we demonstrated that unsaturated fatty acids (FAs), unlike saturated ones, are more likely to form lipid droplets in murine macrophages. Specifically, unsaturated FAs, including linoleic acids (LA), activate the FABP4/CEBPα pathway, leading to triglyceride synthesis and lipid droplet formation. Furthermore, FABP4 enhances lipolysis and FA utilization by breast cancer cell lines, which promotes cancer cell migration in vitro and metastasis in vivo. Notably, a deficiency of FABP4 in murine macrophages significantly reduces LA-induced lipid metabolism. Therefore, our findings suggest FABP4 as a crucial lipid messenger that facilitates unsaturated FA-mediated lipid accumulation and lipolysis in TAMs, thus contributing to the metastasis of breast cancer.