Estrogen exacerbates mammary involution through neutrophil dependent and independent mechanism

  1. Chew Leng Lim
  2. Yu Zuan Or
  3. Zoe Ong
  4. Hwa Hwa Chung
  5. Hirohito Hayashi
  6. Smeeta Shrestha
  7. Shunsuke Chiba
  8. Feng Lin
  9. Valerie Chun Ling Lin  Is a corresponding author
  1. Nanyang Technological University, Singapore
  2. Dayananda Sagar University, India

Abstract

There is strong evidence that the pro-inflammatory microenvironment during post-partum mammary involution promotes parity-associated breast cancer. Estrogen exposure during mammary involution drives tumour growth through neutrophils' activity. However, how estrogen and neutrophils influence mammary involution are unknown. Combined analysis of transcriptomic, protein, and immunohistochemical data in BALB/c mice showed that estrogen promotes involution by exacerbating inflammation, cell death and adipocytes repopulation. Remarkably, 88% of estrogen-regulated genes in mammary tissue were mediated through neutrophils, which were recruited through estrogen-induced CXCR2 signalling in an autocrine fashion. While neutrophils mediate estrogen-induced inflammation and adipocytes repopulation, estrogen-induced mammary cell death was via lysosome-mediated programmed cell death through upregulation of cathepsin B, Tnf and Bid in a neutrophil-independent manner. Notably, these multifaceted effects of estrogen are mostly mediated by ERα and unique to the phase of mammary involution. These findings are important for the development of intervention strategies for parity-associated breast cancer.

Data availability

Sequencing data have been deposited in DR-NTU (DATA) accessible with the URL https://doi.org/10.21979/N9/YBRINN.

The following data sets were generated

Article and author information

Author details

  1. Chew Leng Lim

    NTU Institute for Health Technologies, Interdisciplinary Graduate School; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4529-2732
  2. Yu Zuan Or

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Zoe Ong

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Hwa Hwa Chung

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Hirohito Hayashi

    Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Smeeta Shrestha

    School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6560-4230
  7. Shunsuke Chiba

    Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Feng Lin

    School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  9. Valerie Chun Ling Lin

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    For correspondence
    cllin@ntu.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7997-2771

Funding

Ministry of Education of Singapore (MOE2017-T1-002-08)

  • Valerie Chun Ling Lin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed in accordance with the protocol approved by the Nanyang Technological University Institutional Animal Care and Use Committee (NTU-IACUC) under the protocol number A0306 and A18036.

Copyright

© 2020, Lim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,615
    views
  • 196
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chew Leng Lim
  2. Yu Zuan Or
  3. Zoe Ong
  4. Hwa Hwa Chung
  5. Hirohito Hayashi
  6. Smeeta Shrestha
  7. Shunsuke Chiba
  8. Feng Lin
  9. Valerie Chun Ling Lin
(2020)
Estrogen exacerbates mammary involution through neutrophil dependent and independent mechanism
eLife 9:e57274.
https://doi.org/10.7554/eLife.57274

Share this article

https://doi.org/10.7554/eLife.57274

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.