Estrogen exacerbates mammary involution through neutrophil dependent and independent mechanism

  1. Chew Leng Lim
  2. Yu Zuan Or
  3. Zoe Ong
  4. Hwa Hwa Chung
  5. Hirohito Hayashi
  6. Smeeta Shrestha
  7. Shunsuke Chiba
  8. Feng Lin
  9. Valerie Chun Ling Lin  Is a corresponding author
  1. Nanyang Technological University, Singapore
  2. Dayananda Sagar University, India

Abstract

There is strong evidence that the pro-inflammatory microenvironment during post-partum mammary involution promotes parity-associated breast cancer. Estrogen exposure during mammary involution drives tumour growth through neutrophils' activity. However, how estrogen and neutrophils influence mammary involution are unknown. Combined analysis of transcriptomic, protein, and immunohistochemical data in BALB/c mice showed that estrogen promotes involution by exacerbating inflammation, cell death and adipocytes repopulation. Remarkably, 88% of estrogen-regulated genes in mammary tissue were mediated through neutrophils, which were recruited through estrogen-induced CXCR2 signalling in an autocrine fashion. While neutrophils mediate estrogen-induced inflammation and adipocytes repopulation, estrogen-induced mammary cell death was via lysosome-mediated programmed cell death through upregulation of cathepsin B, Tnf and Bid in a neutrophil-independent manner. Notably, these multifaceted effects of estrogen are mostly mediated by ERα and unique to the phase of mammary involution. These findings are important for the development of intervention strategies for parity-associated breast cancer.

Data availability

Sequencing data have been deposited in DR-NTU (DATA) accessible with the URL https://doi.org/10.21979/N9/YBRINN.

The following data sets were generated

Article and author information

Author details

  1. Chew Leng Lim

    NTU Institute for Health Technologies, Interdisciplinary Graduate School; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4529-2732
  2. Yu Zuan Or

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Zoe Ong

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Hwa Hwa Chung

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Hirohito Hayashi

    Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Smeeta Shrestha

    School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6560-4230
  7. Shunsuke Chiba

    Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Feng Lin

    School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  9. Valerie Chun Ling Lin

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    For correspondence
    cllin@ntu.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7997-2771

Funding

Ministry of Education of Singapore (MOE2017-T1-002-08)

  • Valerie Chun Ling Lin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed in accordance with the protocol approved by the Nanyang Technological University Institutional Animal Care and Use Committee (NTU-IACUC) under the protocol number A0306 and A18036.

Reviewing Editor

  1. Yuting Ma, Suzhou Institute of Systems Medicine, China

Publication history

  1. Received: March 26, 2020
  2. Accepted: July 23, 2020
  3. Accepted Manuscript published: July 24, 2020 (version 1)
  4. Version of Record published: August 10, 2020 (version 2)

Copyright

© 2020, Lim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,226
    Page views
  • 154
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chew Leng Lim
  2. Yu Zuan Or
  3. Zoe Ong
  4. Hwa Hwa Chung
  5. Hirohito Hayashi
  6. Smeeta Shrestha
  7. Shunsuke Chiba
  8. Feng Lin
  9. Valerie Chun Ling Lin
(2020)
Estrogen exacerbates mammary involution through neutrophil dependent and independent mechanism
eLife 9:e57274.
https://doi.org/10.7554/eLife.57274

Further reading

    1. Cell Biology
    2. Developmental Biology
    Yalda Afshar, Feyiang Ma ... Luisa Iruela-Arispe
    Research Article

    Environmental cues, such as physical forces and heterotypic cell interactions play a critical role in cell function, yet their collective contributions to transcriptional changes are unclear. Focusing on human endothelial cells, we performed broad individual sample analysis to identify transcriptional drifts associated with environmental changes that were independent of genetic background. Global gene expression profiling by RNAseq and protein expression by LC-MS directed proteomics distinguished endothelial cells in vivo from genetically matched culture (in vitro) samples. Over 43% of the transcriptome was significantly changed by the in vitro environment. Subjecting cultured cells to long-term shear stress significantly rescued the expression of approximately 17% of genes. Inclusion of heterotypic interactions by co-culture of endothelial cells with smooth muscle cells normalized approximately 9% of the original in vivo signature. We also identified novel flow dependent genes, as well as genes that necessitate heterotypic cell interactions to mimic the in vivo transcriptome. Our findings highlight specific genes and pathways that rely on contextual information for adequate expression from those that are agnostic of such environmental cues.

    1. Developmental Biology
    Jeff Jiajing Zhou, Jin Sun Cho ... Ken WY Cho
    Research Article

    Histone acetylation is a pivotal epigenetic modification that controls chromatin structure and regulates gene expression. It plays an essential role in modulating zygotic transcription and cell lineage specification of developing embryos. While the outcomes of many inductive signals have been described to require enzymatic activities of histone acetyltransferases and deacetylases (HDACs), the mechanisms by which HDACs confine the utilization of the zygotic genome remain to be elucidated. Here, we show that histone deacetylase 1 (Hdac1) progressively binds to the zygotic genome from mid blastula and onward. The recruitment of Hdac1 to the genome at blastula is instructed maternally. Cis-regulatory modules (CRMs) bound by Hdac1 possess epigenetic signatures underlying distinct functions. We highlight a dual function model of Hdac1 where Hdac1 not only represses gene expression by sustaining a histone hypoacetylation state on inactive chromatin, but also maintains gene expression through participating in dynamic histone acetylation-deacetylation cycles on active chromatin. As a result, Hdac1 maintains differential histone acetylation states of bound CRMs between different germ layers and reinforces the transcriptional program underlying cell lineage identities, both in time and space. Taken together, our study reveals a comprehensive role for Hdac1 during early vertebrate embryogenesis.