Therapeutic genetic variation revealed in diverse Hsp104 homologs

  1. Zachary M March
  2. Katelyn Sweeney
  3. Hanna Kim
  4. Xiaohui Yan
  5. Laura M Castellano
  6. Meredith E Jackrel
  7. JiaBei Lin
  8. Edward Chuang
  9. Edward Gomes
  10. Corey W Willicott
  11. Karolina Michalska
  12. Robert P Jedrzejczak
  13. Andrzej Joachimiak
  14. Kim A Caldwell
  15. Guy A Caldwell
  16. Ophir Shalem
  17. James Shorter  Is a corresponding author
  1. University of Pennsylvania, United States
  2. The University of Alabama, United States
  3. Washington University in St Louis, United States
  4. Argonne National Laboratory, United States

Abstract

The AAA+ protein disaggregase, Hsp104, increases fitness under stress by reversing stress-induced protein aggregation. Natural Hsp104 variants might exist with enhanced, selective activity against neurodegenerative disease substrates. However, natural Hsp104 variation remains largely unexplored. Here, we screened a cross-kingdom collection of Hsp104 homologs in yeast proteotoxicity models. Prokaryotic ClpG reduced TDP-43, FUS, and a-synuclein toxicity, whereas prokaryotic ClpB and hyperactive variants were ineffective. We uncovered therapeutic genetic variation among eukaryotic Hsp104 homologs that specifically antagonized TDP-43 condensation and toxicity in yeast and TDP-43 aggregation in human cells. We also uncovered distinct eukaryotic Hsp104 homologs that selectively antagonized a-synuclein condensation and toxicity in yeast and dopaminergic neurodegeneration in C. elegans. Surprisingly, this therapeutic variation did not manifest as enhanced disaggregase activity, but rather as increased passive inhibition of aggregation of specific substrates. By exploring natural tuning of this passive Hsp104 activity, we elucidated enhanced, substrate-specific agents that counter proteotoxicity underlying neurodegeneration.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Zachary M March

    Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2441-899X
  2. Katelyn Sweeney

    Genetics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  3. Hanna Kim

    Biological Sciences, The University of Alabama, Tuscaloosa, United States
    Competing interests
    No competing interests declared.
  4. Xiaohui Yan

    Biological Sciences, The University of Alabama, Tuscaloosa, United States
    Competing interests
    No competing interests declared.
  5. Laura M Castellano

    Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  6. Meredith E Jackrel

    Department of Chemistry, Washington University in St Louis, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4406-9504
  7. JiaBei Lin

    Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  8. Edward Chuang

    Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  9. Edward Gomes

    Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  10. Corey W Willicott

    Biological Sciences, The University of Alabama, Tuscaloosa, United States
    Competing interests
    No competing interests declared.
  11. Karolina Michalska

    Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Lemont, United States
    Competing interests
    No competing interests declared.
  12. Robert P Jedrzejczak

    Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, United States
    Competing interests
    No competing interests declared.
  13. Andrzej Joachimiak

    Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, United States
    Competing interests
    No competing interests declared.
  14. Kim A Caldwell

    Biological Sciences, The University of Alabama, Tuscaloosa, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1580-6122
  15. Guy A Caldwell

    Biological Sciences, The University of Alabama, Tuscaloosa, United States
    Competing interests
    No competing interests declared.
  16. Ophir Shalem

    Genetics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  17. James Shorter

    Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    For correspondence
    jshorter@pennmedicine.upenn.edu
    Competing interests
    James Shorter, J.S. is a consultant for Dewpoint Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5269-8533

Funding

National Institute of General Medical Sciences (R01GM099836)

  • James Shorter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Franz-Ulrich Hartl, Max Planck Institute for Biochemistry, Germany

Version history

  1. Received: April 1, 2020
  2. Accepted: December 14, 2020
  3. Accepted Manuscript published: December 15, 2020 (version 1)
  4. Version of Record published: January 5, 2021 (version 2)

Copyright

© 2020, March et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,777
    views
  • 253
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zachary M March
  2. Katelyn Sweeney
  3. Hanna Kim
  4. Xiaohui Yan
  5. Laura M Castellano
  6. Meredith E Jackrel
  7. JiaBei Lin
  8. Edward Chuang
  9. Edward Gomes
  10. Corey W Willicott
  11. Karolina Michalska
  12. Robert P Jedrzejczak
  13. Andrzej Joachimiak
  14. Kim A Caldwell
  15. Guy A Caldwell
  16. Ophir Shalem
  17. James Shorter
(2020)
Therapeutic genetic variation revealed in diverse Hsp104 homologs
eLife 9:e57457.
https://doi.org/10.7554/eLife.57457

Share this article

https://doi.org/10.7554/eLife.57457

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.