Molecular basis for the adaptive evolution of environment sensing by H-NS proteins

  1. Xiaochuan Zhao
  2. Umar Farook Shahul Hameed
  3. Vladlena Kharchenko
  4. Chenyi Liao
  5. Franceline Huser
  6. Jacob M Remington
  7. Anand K Radhakrishnan
  8. Mariusz Jaremko
  9. Łukasz Jaremko  Is a corresponding author
  10. Stefan T Arold  Is a corresponding author
  11. Jianing Li  Is a corresponding author
  1. University of Vermont, United States
  2. King Abdullah University of Science and Technology, Saudi Arabia

Abstract

The DNA-binding protein H-NS is a pleiotropic gene regulator in gram-negative bacteria. Through its capacity to sense temperature and other environmental factors, H-NS allows pathogens like Salmonella to adapt their gene expression to their presence inside or outside warm-blooded hosts. To investigate how this sensing mechanism may have evolved to fit different bacterial lifestyles, we compared H-NS orthologs from bacteria that infect humans, plants, and insects, and from bacteria that live on a deep-sea hypothermal vent. The combination of biophysical characterization, high-resolution proton-less NMR spectroscopy and molecular simulations revealed, at an atomistic level, how the same general mechanism was adapted to specific habitats and lifestyles. In particular, we demonstrate how environment-sensing characteristics arise from specifically positioned intra- or intermolecular electrostatic interactions. Our integrative approach clarified the exact modus operandi for H-NS–mediated environmental sensing and suggests that this sensing mechanism resulted from the exaptation of an ancestral protein feature.

Data availability

NMR chemical shift assignments were deposited at the BMBR https://betadeposit.bmrb.wisc.edu/ with IDs 50239 and 50240

The following data sets were generated

Article and author information

Author details

  1. Xiaochuan Zhao

    Department of Chemistry, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Umar Farook Shahul Hameed

    Computational Bioscience Research Center; Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  3. Vladlena Kharchenko

    Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  4. Chenyi Liao

    Department of Chemistry, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Franceline Huser

    Computational Bioscience Research Center; Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  6. Jacob M Remington

    Department of Chemistry, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Anand K Radhakrishnan

    Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  8. Mariusz Jaremko

    Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  9. Łukasz Jaremko

    Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    For correspondence
    lukasz.jaremko@kaust.edu.sa
    Competing interests
    The authors declare that no competing interests exist.
  10. Stefan T Arold

    Computational Bioscience Research Center; Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    For correspondence
    stefan.arold@kaust.edu.sa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5278-0668
  11. Jianing Li

    Department of Chemistry, University of Vermont, Burlington, United States
    For correspondence
    jianing.li@uvm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0143-8894

Funding

King Abdullah University of Science and Technology (FCC/1/1976-25)

  • Xiaochuan Zhao

National Institute of General Medical Sciences (R01GM129431)

  • Jianing Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yibing Shan, Antidote Health Foundation, United States

Publication history

  1. Received: April 1, 2020
  2. Accepted: January 6, 2021
  3. Accepted Manuscript published: January 7, 2021 (version 1)
  4. Version of Record published: January 20, 2021 (version 2)

Copyright

© 2021, Zhao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,316
    Page views
  • 210
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaochuan Zhao
  2. Umar Farook Shahul Hameed
  3. Vladlena Kharchenko
  4. Chenyi Liao
  5. Franceline Huser
  6. Jacob M Remington
  7. Anand K Radhakrishnan
  8. Mariusz Jaremko
  9. Łukasz Jaremko
  10. Stefan T Arold
  11. Jianing Li
(2021)
Molecular basis for the adaptive evolution of environment sensing by H-NS proteins
eLife 10:e57467.
https://doi.org/10.7554/eLife.57467

Further reading

    1. Biochemistry and Chemical Biology
    2. Developmental Biology
    Zengdi Zhang, Zan Huang ... Hai-Bin Ruan
    Research Article Updated

    In mammals, interactions between the bone marrow (BM) stroma and hematopoietic progenitors contribute to bone-BM homeostasis. Perinatal bone growth and ossification provide a microenvironment for the transition to definitive hematopoiesis; however, mechanisms and interactions orchestrating the development of skeletal and hematopoietic systems remain largely unknown. Here, we establish intracellular O-linked β-N-acetylglucosamine (O-GlcNAc) modification as a posttranslational switch that dictates the differentiation fate and niche function of early BM stromal cells (BMSCs). By modifying and activating RUNX2, O-GlcNAcylation promotes osteogenic differentiation of BMSCs and stromal IL-7 expression to support lymphopoiesis. In contrast, C/EBPβ-dependent marrow adipogenesis and expression of myelopoietic stem cell factor (SCF) is inhibited by O-GlcNAcylation. Ablating O-GlcNAc transferase (OGT) in BMSCs leads to impaired bone formation, increased marrow adiposity, as well as defective B-cell lymphopoiesis and myeloid overproduction in mice. Thus, the balance of osteogenic and adipogenic differentiation of BMSCs is determined by reciprocal O-GlcNAc regulation of transcription factors, which simultaneously shapes the hematopoietic niche.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Hilary Scott, Boris Novikov ... Vladislav Panin
    Research Article

    Modification by sialylated glycans can affect protein functions, underlying mechanisms that control animal development and physiology. Sialylation relies on a dedicated pathway involving evolutionarily conserved enzymes, including CMP-sialic acid synthetase (CSAS) and sialyltransferase (SiaT) that mediate the activation of sialic acid and its transfer onto glycan termini, respectively. In Drosophila, CSAS and DSiaT genes function in the nervous system, affecting neural transmission and excitability. We found that these genes function in different cells: the function of CSAS is restricted to glia, while DSiaT functions in neurons. This partition of the sialylation pathway allows for regulation of neural functions via a glia-mediated control of neural sialylation. The sialylation genes were shown to be required for tolerance to heat and oxidative stress and for maintenance of the normal level of voltage-gated sodium channels. Our results uncovered a unique bipartite sialylation pathway that mediates glia-neuron coupling and regulates neural excitability and stress tolerance.