Evolutionarily conserved regulation of immunity by the splicing factor RNP-6/PUF60

  1. Chun Kew
  2. Wenming Huang
  3. Julia Fischer
  4. Raja Ganesan
  5. Nirmal Robinson
  6. Adam Antebi  Is a corresponding author
  1. Max Planck Institute for Biology of Ageing, Germany
  2. University of Cologne, Germany
  3. University of South Australia, Australia

Abstract

Splicing is a vital cellular process that modulates important aspects of animal physiology, yet roles in regulating innate immunity are relatively unexplored. From genetic screens in C. elegans, we identified splicing factor RNP-6/PUF60 whose activity suppresses immunity, but promotes longevity, suggesting a tradeoff between these processes. Bacterial pathogen exposure affects gene expression and splicing in a rnp-6 dependent manner, and rnp-6 gain and loss-of-function activities reveal an active role in immune regulation. Another longevity promoting splicing factor, SFA-1, similarly exerts an immuno-suppressive effect, working downstream or parallel to RNP-6. RNP-6 acts through TIR-1/PMK-1/MAPK signaling to modulate immunity. The mammalian homolog, PUF60, also displays anti-inflammatory properties, and its levels swiftly decrease after bacterial infection in mammalian cells, implying a role in the host response. Altogether our findings demonstrate an evolutionarily conserved modulation of immunity by specific components of the splicing machinery.

Data availability

RNA-seq data has been deposited in GEO. Accession code GSE141097.

The following data sets were generated

Article and author information

Author details

  1. Chun Kew

    Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Wenming Huang

    Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Julia Fischer

    Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Raja Ganesan

    Cellular-Stress and Immune Response Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Nirmal Robinson

    Cellular-Stress and Immune Response Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7361-9491
  6. Adam Antebi

    Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    For correspondence
    antebi@age.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7241-3029

Funding

Max-Planck-Gesellschaft

  • Chun Kew
  • Wenming Huang
  • Adam Antebi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bruno Lemaître, École Polytechnique Fédérale de Lausanne, Switzerland

Version history

  1. Received: April 6, 2020
  2. Accepted: June 14, 2020
  3. Accepted Manuscript published: June 15, 2020 (version 1)
  4. Version of Record published: July 2, 2020 (version 2)

Copyright

© 2020, Kew et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,601
    views
  • 451
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chun Kew
  2. Wenming Huang
  3. Julia Fischer
  4. Raja Ganesan
  5. Nirmal Robinson
  6. Adam Antebi
(2020)
Evolutionarily conserved regulation of immunity by the splicing factor RNP-6/PUF60
eLife 9:e57591.
https://doi.org/10.7554/eLife.57591

Share this article

https://doi.org/10.7554/eLife.57591

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Céline Petitgas, Laurent Seugnet ... Serge Birman
    Research Article

    Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch–Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.

    1. Genetics and Genomics
    Gbolahan Bamgbose, Guillaume Bordet ... Alexei Tulin
    Research Article

    PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.