SUMO is a pervasive regulator of meiosis

  1. Nikhil R Bhagwat
  2. Shannon N Owens
  3. Masaru Ito
  4. Jay V Boinapalli
  5. Philip Poa
  6. Alexander Ditzel
  7. Srujan Kopparapu
  8. Meghan Mahalawat
  9. Owen Richard Davies
  10. Sean R Collins
  11. Jeffrey R Johnson
  12. Nevan J Krogan
  13. Neil Hunter  Is a corresponding author
  1. University of California, Davis and Howard Hughes Medical Institute, United States
  2. University of California, Davis, United States
  3. Newcastle University, United Kingdom
  4. University of California, San Francisco, United States

Abstract

Protein modification by SUMO helps orchestrate the elaborate events of meiosis to faithfully produce haploid gametes. To date, only a handful of meiotic SUMO targets have been identified. Here we delineate a multidimensional SUMO-modified meiotic proteome in budding yeast, identifying 2747 conjugation sites in 775 targets, and defining their relative levels and dynamics. Modified sites cluster in disordered regions and only a minority match consensus motifs. Target identities and modification dynamics imply that SUMOylation regulates all levels of chromosome organization and each step of meiotic prophase I. Execution-point analysis confirms these inferences, revealing functions for SUMO in S-phase, the initiation of recombination, chromosome synapsis and crossing over. K15-linked SUMO chains become prominent as chromosomes synapse and recombine, consistent with roles in these processes. SUMO also modifies ubiquitin, forming hybrid oligomers with potential to modulate ubiquitin signaling. We conclude that SUMO plays diverse and unanticipated roles in regulating meiotic chromosome metabolism.

Data availability

Proteomics data have been deposited in the PRIDE archive under the accession code PXD012418.

The following data sets were generated

Article and author information

Author details

  1. Nikhil R Bhagwat

    Department of Microbiology and Molecular Genetics, University of California, Davis and Howard Hughes Medical Institute, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2945-6453
  2. Shannon N Owens

    Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0810-0116
  3. Masaru Ito

    Department of Microbiology and Molecular Genetics, University of California, Davis and Howard Hughes Medical Institute, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jay V Boinapalli

    Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Philip Poa

    Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexander Ditzel

    Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Srujan Kopparapu

    Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Meghan Mahalawat

    Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Owen Richard Davies

    Cell Division Biology Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3806-5403
  10. Sean R Collins

    Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4276-5840
  11. Jeffrey R Johnson

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Nevan J Krogan

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Neil Hunter

    Department of Microbiology and Molecular Genetics, University of California, Davis and Howard Hughes Medical Institute, Davis, United States
    For correspondence
    nhunter@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1498-2327

Funding

National Institute of General Medical Sciences (GM074223)

  • Neil Hunter

Howard Hughes Medical Institute (Investigator Award)

  • Neil Hunter

National Institute of General Medical Sciences (5T32GM007377)

  • Shannon N Owens

National Institute of General Medical Sciences (1F31GM125106)

  • Shannon N Owens

Japan Society for the Promotion of Science (postdoctoral fellowship)

  • Masaru Ito

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Bhagwat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,570
    views
  • 806
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nikhil R Bhagwat
  2. Shannon N Owens
  3. Masaru Ito
  4. Jay V Boinapalli
  5. Philip Poa
  6. Alexander Ditzel
  7. Srujan Kopparapu
  8. Meghan Mahalawat
  9. Owen Richard Davies
  10. Sean R Collins
  11. Jeffrey R Johnson
  12. Nevan J Krogan
  13. Neil Hunter
(2021)
SUMO is a pervasive regulator of meiosis
eLife 10:e57720.
https://doi.org/10.7554/eLife.57720

Share this article

https://doi.org/10.7554/eLife.57720

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.