Plasmodium falciparum translational machinery condones polyadenosine repeats

  1. Slavica Pavlovic Djuranovic  Is a corresponding author
  2. Jessey Erath
  3. Ryan J Andrews
  4. Peter O Bayguinov
  5. Joyce J Chung
  6. Douglas L Chalker
  7. James AJ Fitzpatrick
  8. Walter N Moss
  9. Pawel Szczesny  Is a corresponding author
  10. Sergej Djuranovic  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. Iowa State University, United States
  3. Washington University in St Louis, United States
  4. Institute of Biochemistry and Biophysics Polish Academy of Sciences, Poland

Abstract

Plasmodium falciparum is causative agent of human malaria. Sixty percent of mRNAs from its extremely AT-rich (81%) genome harbor long polyadenosine (polyA) runs within their ORFs, distinguishing the parasite from its hosts and other sequenced organisms. Recent studies indicate polyA runs cause ribosome stalling and frameshifting, triggering mRNA surveillance pathways and attenuating protein synthesis. Here, we show that the P. falciparum is an exception to this rule. We demonstrate that both endogenous genes and reporter sequences containing long polyA runs are efficiently and accurately translated in P. falciparum cells. We show that polyA runs do not elicit any response from No Go Decay (NGD) or result in the production of frameshifted proteins. This is in stark contrast to what we observe in human cells or T. thermophile, an organism with similar AT-content. Finally, using stalling reporters we show that Plasmodium cells evolved not to have a fully functional NGD pathway.

Data availability

All data generated or analysed during this study are included in the manuscript, supporting files or referenced. Source data files have been referenced for Figures 1, 3 and 5, as well as for supplementary figures.

The following previously published data sets were used

Article and author information

Author details

  1. Slavica Pavlovic Djuranovic

    Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, United States
    For correspondence
    spavlov@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Jessey Erath

    Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ryan J Andrews

    Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0275-0019
  4. Peter O Bayguinov

    Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Joyce J Chung

    Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Douglas L Chalker

    Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0285-3344
  7. James AJ Fitzpatrick

    Department of Neuroscience, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Walter N Moss

    Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6419-5570
  9. Pawel Szczesny

    Department of Bioinformatics, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
    For correspondence
    szczesny.pawel@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  10. Sergej Djuranovic

    Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, United States
    For correspondence
    sergej.djuranovic@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9417-0822

Funding

National Institute of General Medical Sciences (GM112824)

  • Sergej Djuranovic

Washington University in St. Louis (CDI-CORE-2015-505)

  • James AJ Fitzpatrick

National Science Foundation (MCB 1412336)

  • Douglas L Chalker

National Institute of General Medical Sciences (GM112877)

  • Walter N Moss

National Institute of General Medical Sciences (GM007067)

  • Jessey Erath

Washington University in St. Louis (CDI-CORE-2019-813)

  • James AJ Fitzpatrick

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Pavlovic Djuranovic et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,494
    views
  • 360
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Slavica Pavlovic Djuranovic
  2. Jessey Erath
  3. Ryan J Andrews
  4. Peter O Bayguinov
  5. Joyce J Chung
  6. Douglas L Chalker
  7. James AJ Fitzpatrick
  8. Walter N Moss
  9. Pawel Szczesny
  10. Sergej Djuranovic
(2020)
Plasmodium falciparum translational machinery condones polyadenosine repeats
eLife 9:e57799.
https://doi.org/10.7554/eLife.57799

Share this article

https://doi.org/10.7554/eLife.57799

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    Jonathan G Van Vranken, Jiaming Li ... Devin K Schweppe
    Research Article

    In response to an ever-increasing demand of new small molecules therapeutics, numerous chemical and genetic tools have been developed to interrogate compound mechanism of action. Owing to its ability to approximate compound-dependent changes in thermal stability, the proteome-wide thermal shift assay has emerged as a powerful tool in this arsenal. The most recent iterations have drastically improved the overall efficiency of these assays, providing an opportunity to screen compounds at a previously unprecedented rate. Taking advantage of this advance, we quantified more than one million thermal stability measurements in response to multiple classes of therapeutic and tool compounds (96 compounds in living cells and 70 compounds in lysates). When interrogating the dataset as a whole, approximately 80% of compounds (with quantifiable targets) caused a significant change in the thermal stability of an annotated target. There was also a wealth of evidence portending off-target engagement despite the extensive use of the compounds in the laboratory and/or clinic. Finally, the combined application of cell- and lysate-based assays, aided in the classification of primary (direct ligand binding) and secondary (indirect) changes in thermal stability. Overall, this study highlights the value of these assays in the drug development process by affording an unbiased and reliable assessment of compound mechanism of action.