Plasmodium falciparum translational machinery condones polyadenosine repeats

  1. Slavica Pavlovic Djuranovic  Is a corresponding author
  2. Jessey Erath
  3. Ryan J Andrews
  4. Peter O Bayguinov
  5. Joyce J Chung
  6. Douglas L Chalker
  7. James AJ Fitzpatrick
  8. Walter N Moss
  9. Pawel Szczesny  Is a corresponding author
  10. Sergej Djuranovic  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. Iowa State University, United States
  3. Washington University in St Louis, United States
  4. Institute of Biochemistry and Biophysics Polish Academy of Sciences, Poland

Abstract

Plasmodium falciparum is causative agent of human malaria. Sixty percent of mRNAs from its extremely AT-rich (81%) genome harbor long polyadenosine (polyA) runs within their ORFs, distinguishing the parasite from its hosts and other sequenced organisms. Recent studies indicate polyA runs cause ribosome stalling and frameshifting, triggering mRNA surveillance pathways and attenuating protein synthesis. Here, we show that the P. falciparum is an exception to this rule. We demonstrate that both endogenous genes and reporter sequences containing long polyA runs are efficiently and accurately translated in P. falciparum cells. We show that polyA runs do not elicit any response from No Go Decay (NGD) or result in the production of frameshifted proteins. This is in stark contrast to what we observe in human cells or T. thermophile, an organism with similar AT-content. Finally, using stalling reporters we show that Plasmodium cells evolved not to have a fully functional NGD pathway.

Data availability

All data generated or analysed during this study are included in the manuscript, supporting files or referenced. Source data files have been referenced for Figures 1, 3 and 5, as well as for supplementary figures.

The following previously published data sets were used

Article and author information

Author details

  1. Slavica Pavlovic Djuranovic

    Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, United States
    For correspondence
    spavlov@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Jessey Erath

    Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ryan J Andrews

    Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0275-0019
  4. Peter O Bayguinov

    Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Joyce J Chung

    Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Douglas L Chalker

    Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0285-3344
  7. James AJ Fitzpatrick

    Department of Neuroscience, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Walter N Moss

    Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6419-5570
  9. Pawel Szczesny

    Department of Bioinformatics, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
    For correspondence
    szczesny.pawel@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  10. Sergej Djuranovic

    Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, United States
    For correspondence
    sergej.djuranovic@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9417-0822

Funding

National Institute of General Medical Sciences (GM112824)

  • Sergej Djuranovic

Washington University in St. Louis (CDI-CORE-2015-505)

  • James AJ Fitzpatrick

National Science Foundation (MCB 1412336)

  • Douglas L Chalker

National Institute of General Medical Sciences (GM112877)

  • Walter N Moss

National Institute of General Medical Sciences (GM007067)

  • Jessey Erath

Washington University in St. Louis (CDI-CORE-2019-813)

  • James AJ Fitzpatrick

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nahum Sonenberg, McGill University, Canada

Version history

  1. Received: April 13, 2020
  2. Accepted: May 28, 2020
  3. Accepted Manuscript published: May 29, 2020 (version 1)
  4. Version of Record published: June 15, 2020 (version 2)

Copyright

© 2020, Pavlovic Djuranovic et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,407
    views
  • 349
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Slavica Pavlovic Djuranovic
  2. Jessey Erath
  3. Ryan J Andrews
  4. Peter O Bayguinov
  5. Joyce J Chung
  6. Douglas L Chalker
  7. James AJ Fitzpatrick
  8. Walter N Moss
  9. Pawel Szczesny
  10. Sergej Djuranovic
(2020)
Plasmodium falciparum translational machinery condones polyadenosine repeats
eLife 9:e57799.
https://doi.org/10.7554/eLife.57799

Share this article

https://doi.org/10.7554/eLife.57799

Further reading

    1. Biochemistry and Chemical Biology
    2. Medicine
    Giulia Leanza, Francesca Cannata ... Nicola Napoli
    Research Article

    Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156–0.366]) vs non-diabetic subjects 0.352% [0.269–0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46–30.10] vs non-diabetic subjects 76.24 MPa [26.81–132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=–0.7500, p=0.0255; r=–0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young’s modulus was negatively correlated with SOST (r=−0.5675, p=0.0011), AXIN2 (r=−0.5523, p=0.0042), and SFRP5 (r=−0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.

    1. Biochemistry and Chemical Biology
    Valentin Bohl, Nele Merret Hollmann ... Axel Mogk
    Research Article

    Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.