Plasmodium falciparum translational machinery condones polyadenosine repeats

  1. Slavica Pavlovic Djuranovic  Is a corresponding author
  2. Jessey Erath
  3. Ryan J Andrews
  4. Peter O Bayguinov
  5. Joyce J Chung
  6. Douglas L Chalker
  7. James AJ Fitzpatrick
  8. Walter N Moss
  9. Pawel Szczesny  Is a corresponding author
  10. Sergej Djuranovic  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. Iowa State University, United States
  3. Washington University in St Louis, United States
  4. Institute of Biochemistry and Biophysics Polish Academy of Sciences, Poland

Abstract

Plasmodium falciparum is causative agent of human malaria. Sixty percent of mRNAs from its extremely AT-rich (81%) genome harbor long polyadenosine (polyA) runs within their ORFs, distinguishing the parasite from its hosts and other sequenced organisms. Recent studies indicate polyA runs cause ribosome stalling and frameshifting, triggering mRNA surveillance pathways and attenuating protein synthesis. Here, we show that the P. falciparum is an exception to this rule. We demonstrate that both endogenous genes and reporter sequences containing long polyA runs are efficiently and accurately translated in P. falciparum cells. We show that polyA runs do not elicit any response from No Go Decay (NGD) or result in the production of frameshifted proteins. This is in stark contrast to what we observe in human cells or T. thermophile, an organism with similar AT-content. Finally, using stalling reporters we show that Plasmodium cells evolved not to have a fully functional NGD pathway.

Data availability

All data generated or analysed during this study are included in the manuscript, supporting files or referenced. Source data files have been referenced for Figures 1, 3 and 5, as well as for supplementary figures.

The following previously published data sets were used

Article and author information

Author details

  1. Slavica Pavlovic Djuranovic

    Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, United States
    For correspondence
    spavlov@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Jessey Erath

    Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ryan J Andrews

    Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0275-0019
  4. Peter O Bayguinov

    Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Joyce J Chung

    Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Douglas L Chalker

    Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0285-3344
  7. James AJ Fitzpatrick

    Department of Neuroscience, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Walter N Moss

    Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6419-5570
  9. Pawel Szczesny

    Department of Bioinformatics, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
    For correspondence
    szczesny.pawel@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  10. Sergej Djuranovic

    Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, United States
    For correspondence
    sergej.djuranovic@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9417-0822

Funding

National Institute of General Medical Sciences (GM112824)

  • Sergej Djuranovic

Washington University in St. Louis (CDI-CORE-2015-505)

  • James AJ Fitzpatrick

National Science Foundation (MCB 1412336)

  • Douglas L Chalker

National Institute of General Medical Sciences (GM112877)

  • Walter N Moss

National Institute of General Medical Sciences (GM007067)

  • Jessey Erath

Washington University in St. Louis (CDI-CORE-2019-813)

  • James AJ Fitzpatrick

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nahum Sonenberg, McGill University, Canada

Version history

  1. Received: April 13, 2020
  2. Accepted: May 28, 2020
  3. Accepted Manuscript published: May 29, 2020 (version 1)
  4. Version of Record published: June 15, 2020 (version 2)

Copyright

© 2020, Pavlovic Djuranovic et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,385
    Page views
  • 346
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Slavica Pavlovic Djuranovic
  2. Jessey Erath
  3. Ryan J Andrews
  4. Peter O Bayguinov
  5. Joyce J Chung
  6. Douglas L Chalker
  7. James AJ Fitzpatrick
  8. Walter N Moss
  9. Pawel Szczesny
  10. Sergej Djuranovic
(2020)
Plasmodium falciparum translational machinery condones polyadenosine repeats
eLife 9:e57799.
https://doi.org/10.7554/eLife.57799

Share this article

https://doi.org/10.7554/eLife.57799

Further reading

    1. Biochemistry and Chemical Biology
    Chi-Ning Chuang, Hou-Cheng Liu ... Ting-Fang Wang
    Research Article

    Serine(S)/threonine(T)-glutamine(Q) cluster domains (SCDs), polyglutamine (polyQ) tracts and polyglutamine/asparagine (polyQ/N) tracts are Q-rich motifs found in many proteins. SCDs often are intrinsically disordered regions that mediate protein phosphorylation and protein-protein interactions. PolyQ and polyQ/N tracts are structurally flexible sequences that trigger protein aggregation. We report that due to their high percentages of STQ or STQN amino acid content, four SCDs and three prion-causing Q/N-rich motifs of yeast proteins possess autonomous protein expression-enhancing activities. Since these Q-rich motifs can endow proteins with structural and functional plasticity, we suggest that they represent useful toolkits for evolutionary novelty. Comparative Gene Ontology (GO) analyses of the near-complete proteomes of 26 representative model eukaryotes reveal that Q-rich motifs prevail in proteins involved in specialized biological processes, including Saccharomyces cerevisiae RNA-mediated transposition and pseudohyphal growth, Candida albicans filamentous growth, ciliate peptidyl-glutamic acid modification and microtubule-based movement, Tetrahymena thermophila xylan catabolism and meiosis, Dictyostelium discoideum development and sexual cycles, Plasmodium falciparum infection, and the nervous systems of Drosophila melanogaster, Mus musculus and Homo sapiens. We also show that Q-rich-motif proteins are expanded massively in 10 ciliates with reassigned TAAQ and TAGQ codons. Notably, the usage frequency of CAGQ is much lower in ciliates with reassigned TAAQ and TAGQ codons than in organisms with expanded and unstable Q runs (e.g. D. melanogaster and H. sapiens), indicating that the use of noncanonical stop codons in ciliates may have coevolved with codon usage biases to avoid triplet repeat disorders mediated by CAG/GTC replication slippage.

    1. Biochemistry and Chemical Biology
    2. Developmental Biology
    Sima Stroganov, Talia Harris ... Michal Neeman
    Research Article Updated

    Background:

    Fetal growth restriction (FGR) is a pregnancy complication in which a newborn fails to achieve its growth potential, increasing the risk of perinatal morbidity and mortality. Chronic maternal gestational hypoxia, as well as placental insufficiency are associated with increased FGR incidence; however, the molecular mechanisms underlying FGR remain unknown.

    Methods:

    Pregnant mice were subjected to acute or chronic hypoxia (12.5% O2) resulting in reduced fetal weight. Placenta oxygen transport was assessed by blood oxygenation level dependent (BOLD) contrast magnetic resonance imaging (MRI). The placentae were analyzed via immunohistochemistry and in situ hybridization. Human placentae were selected from FGR and matched controls and analyzed by immunohistochemistry (IHC). Maternal and cord sera were analyzed by mass spectrometry.

    Results:

    We show that murine acute and chronic gestational hypoxia recapitulates FGR phenotype and affects placental structure and morphology. Gestational hypoxia decreased labyrinth area, increased the incidence of red blood cells (RBCs) in the labyrinth while expanding the placental spiral arteries (SpA) diameter. Hypoxic placentae exhibited higher hemoglobin-oxygen affinity compared to the control. Placental abundance of Bisphosphoglycerate mutase (BPGM) was upregulated in the syncytiotrophoblast and spiral artery trophoblast cells (SpA TGCs) in the murine gestational hypoxia groups compared to the control. Hif1α levels were higher in the acute hypoxia group compared to the control. In contrast, human FGR placentae exhibited reduced BPGM levels in the syncytiotrophoblast layer compared to placentae from healthy uncomplicated pregnancies. Levels of 2,3 BPG, the product of BPGM, were lower in cord serum of human FGR placentae compared to control. Polar expression of BPGM was found in both human and mouse placentae syncytiotrophoblast, with higher expression facing the maternal circulation. Moreover, in the murine SpA TGCs expression of BPGM was concentrated exclusively in the apical cell side, in direct proximity to the maternal circulation.

    Conclusions:

    This study suggests a possible involvement of placental BPGM in maternal-fetal oxygen transfer, and in the pathophysiology of FGR.

    Funding:

    This work was supported by the Weizmann Krenter Foundation and the Weizmann – Ichilov (Tel Aviv Sourasky Medical Center) Collaborative Grant in Biomedical Research, by the Minerva Foundation, by the ISF KillCorona grant 3777/19.