Plasmodium falciparum translational machinery condones polyadenosine repeats

  1. Slavica Pavlovic Djuranovic  Is a corresponding author
  2. Jessey Erath
  3. Ryan J Andrews
  4. Peter O Bayguinov
  5. Joyce J Chung
  6. Douglas L Chalker
  7. James AJ Fitzpatrick
  8. Walter N Moss
  9. Pawel Szczesny  Is a corresponding author
  10. Sergej Djuranovic  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. Iowa State University, United States
  3. Washington University in St Louis, United States
  4. Institute of Biochemistry and Biophysics Polish Academy of Sciences, Poland

Abstract

Plasmodium falciparum is causative agent of human malaria. Sixty percent of mRNAs from its extremely AT-rich (81%) genome harbor long polyadenosine (polyA) runs within their ORFs, distinguishing the parasite from its hosts and other sequenced organisms. Recent studies indicate polyA runs cause ribosome stalling and frameshifting, triggering mRNA surveillance pathways and attenuating protein synthesis. Here, we show that the P. falciparum is an exception to this rule. We demonstrate that both endogenous genes and reporter sequences containing long polyA runs are efficiently and accurately translated in P. falciparum cells. We show that polyA runs do not elicit any response from No Go Decay (NGD) or result in the production of frameshifted proteins. This is in stark contrast to what we observe in human cells or T. thermophile, an organism with similar AT-content. Finally, using stalling reporters we show that Plasmodium cells evolved not to have a fully functional NGD pathway.

Data availability

All data generated or analysed during this study are included in the manuscript, supporting files or referenced. Source data files have been referenced for Figures 1, 3 and 5, as well as for supplementary figures.

The following previously published data sets were used

Article and author information

Author details

  1. Slavica Pavlovic Djuranovic

    Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, United States
    For correspondence
    spavlov@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Jessey Erath

    Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ryan J Andrews

    Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0275-0019
  4. Peter O Bayguinov

    Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Joyce J Chung

    Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Douglas L Chalker

    Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0285-3344
  7. James AJ Fitzpatrick

    Department of Neuroscience, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Walter N Moss

    Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6419-5570
  9. Pawel Szczesny

    Department of Bioinformatics, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
    For correspondence
    szczesny.pawel@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  10. Sergej Djuranovic

    Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, United States
    For correspondence
    sergej.djuranovic@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9417-0822

Funding

National Institute of General Medical Sciences (GM112824)

  • Sergej Djuranovic

Washington University in St. Louis (CDI-CORE-2015-505)

  • James AJ Fitzpatrick

National Science Foundation (MCB 1412336)

  • Douglas L Chalker

National Institute of General Medical Sciences (GM112877)

  • Walter N Moss

National Institute of General Medical Sciences (GM007067)

  • Jessey Erath

Washington University in St. Louis (CDI-CORE-2019-813)

  • James AJ Fitzpatrick

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Pavlovic Djuranovic et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,613
    views
  • 365
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Slavica Pavlovic Djuranovic
  2. Jessey Erath
  3. Ryan J Andrews
  4. Peter O Bayguinov
  5. Joyce J Chung
  6. Douglas L Chalker
  7. James AJ Fitzpatrick
  8. Walter N Moss
  9. Pawel Szczesny
  10. Sergej Djuranovic
(2020)
Plasmodium falciparum translational machinery condones polyadenosine repeats
eLife 9:e57799.
https://doi.org/10.7554/eLife.57799

Share this article

https://doi.org/10.7554/eLife.57799

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Silvia Galli, Marco Di Antonio
    Insight

    The buildup of knot-like RNA structures in brain cells may be the key to understanding how uncontrolled protein aggregation drives Alzheimer’s disease.