1. Cell Biology
  2. Structural Biology and Molecular Biophysics
Download icon

TANGO1 membrane helices create a lipid diffusion barrier at curved membranes

  1. Ishier Raote  Is a corresponding author
  2. Andreas M Ernst
  3. Felix Campelo
  4. James E Rothman
  5. Frederic Pincet  Is a corresponding author
  6. Vivek Malhotra  Is a corresponding author
  1. The Barcelona Institute of Science and Technology, Spain
  2. Yale School of Medicine, United States
  3. ICFO - The Institute of Photonic Sciences, Spain
  4. Ecole Normal Superieure, France
Research Advance
  • Cited 10
  • Views 2,436
  • Annotations
Cite this article as: eLife 2020;9:e57822 doi: 10.7554/eLife.57822

Abstract

We have previously shown TANGO1 organises membranes at the interface of the endoplasmic reticulum (ER) and ERGIC/Golgi (Raote et al., 2018). TANGO1 corrals retrograde membranes at ER exit sites to create an export conduit. Here the retrograde membrane is, in itself, an anterograde carrier. This mode of forward transport necessitates a mechanism to prevent membrane mixing between ER and the retrograde membrane. TANGO1 has an unusual membrane helix organisation, composed of one membrane-spanning helix (TM) and another that penetrates the inner leaflet (IM). We have reconstituted these membrane helices in model membranes and shown that TM and IM together reduce the flow of lipids at a region of defined shape. We have also shown that the helices align TANGO1 around an ER exit site. We suggest this is a mechanism to prevent membrane mixing during TANGO1-mediated transfer of bulky secretory cargos from the ER to the ERGIC/Golgi via a tunnel.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Ishier Raote

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    ishier.raote@crg.eu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5898-4896
  2. Andreas M Ernst

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  3. Felix Campelo

    ICFO - The Institute of Photonic Sciences, Barcelona, Spain
    Competing interests
    Felix Campelo, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0786-9548
  4. James E Rothman

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8653-8650
  5. Frederic Pincet

    Laboratoire de Physique de l'Ecole Normale Supérieure, Ecole Normal Superieure, Paris, France
    For correspondence
    frederic.pincet@ens.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4243-2157
  6. Vivek Malhotra

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    vivek.malhotra@crg.eu
    Competing interests
    Vivek Malhotra, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6198-7943

Funding

Ministerio de Economía y Competitividad (SEV-2012-0208)

  • Ishier Raote
  • Vivek Malhotra

Generalitat de Catalunya (CERCA)

  • Felix Campelo

Ministerio de Economía y Competitividad (BFU2013-44188-P)

  • Ishier Raote
  • Vivek Malhotra

Ministerio de Economía y Competitividad (CSD2009-00016)

  • Ishier Raote
  • Vivek Malhotra

Ministerio de Economía y Competitividad (IJCI-2017-34751)

  • Ishier Raote

National Institutes of Health (R35 GM118084)

  • James E Rothman

Ministerio de Economía y Competitividad (SEV-2015-0522)

  • Felix Campelo

Ministerio de Economía y Competitividad (RYC-2017-22227)

  • Felix Campelo

Fundacio Privada Cellex

  • Felix Campelo

Fundacio Privada Mir-Puig

  • Felix Campelo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Adam Linstedt, Carnegie Mellon University, United States

Publication history

  1. Received: April 15, 2020
  2. Accepted: May 21, 2020
  3. Accepted Manuscript published: May 26, 2020 (version 1)
  4. Version of Record published: June 2, 2020 (version 2)

Copyright

© 2020, Raote et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,436
    Page views
  • 418
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Jinrui Dong et al.
    Short Report Updated

    It is generally accepted that IL6-mediated STAT3 signaling in hepatocytes, mediated via glycoprotein 130 (gp130; IL6ST), is beneficial and that the synthetic IL6:IL6ST fusion protein (HyperIL6) promotes liver regeneration. Recently, autocrine IL11 activity that also acts via IL6ST but uses ERK rather than STAT3 to signal, was found to be hepatotoxic. Here we examined whether the beneficial effects of HyperIL6 could reflect unappreciated competitive inhibition of IL11-dependent IL6ST signaling. In human and mouse hepatocytes, HyperIL6 reduced N-acetyl-p-aminophenol (APAP)-induced cell death independent of STAT3 activation and instead, dose-dependently, inhibited IL11-related signaling and toxicities. In mice, expression of HyperIl6 reduced ERK activation and promoted STAT3-independent hepatic regeneration (PCNA, Cyclin D1, Ki67) following administration of either IL11 or APAP. Inhibition of putative intrinsic IL6 trans-signaling had no effect on liver regeneration in mice. Following APAP, mice deleted for Il11 exhibited spontaneous liver repair but HyperIl6, despite robustly activating STAT3, had no effect on liver regeneration in this strain. These data show that synthetic IL6ST binding proteins such as HyperIL6 can have unexpected, on-target effects and suggest IL11, not IL6, as important for liver regeneration.

    1. Cell Biology
    2. Developmental Biology
    Spencer R Katz et al.
    Research Advance

    We previously described X-ray histotomography, a high-resolution, non-destructive form of X-ray microtomography (micro-CT) imaging customized for three-dimensional (3D), digital histology, allowing quantitative, volumetric tissue and organismal phenotyping (Ding et al., 2019). Here, we have combined micro-CT with a novel application of ionic silver staining to characterize melanin distribution in whole zebrafish larvae. The resulting images enabled whole-body, computational analyses of regional melanin content and morphology. Normalized micro-CT reconstructions of silver-stained fish consistently reproduced pigment patterns seen by light microscopy, and further allowed direct quantitative comparisons of melanin content across wild-type and mutant samples, including subtle phenotypes not previously noticed. Silver staining of melanin for micro-CT provides proof-of-principle for whole-body, 3D computational phenomic analysis of a specific cell type at cellular resolution, with potential applications in other model organisms and melanocytic neoplasms. Advances such as this in whole-organism, high-resolution phenotyping provide superior context for studying the phenotypic effects of genetic, disease, and environmental variables.