TANGO1 membrane helices create a lipid diffusion barrier at curved membranes

  1. Ishier Raote  Is a corresponding author
  2. Andreas M Ernst
  3. Felix Campelo
  4. James E Rothman
  5. Frederic Pincet  Is a corresponding author
  6. Vivek Malhotra  Is a corresponding author
  1. The Barcelona Institute of Science and Technology, Spain
  2. Yale School of Medicine, United States
  3. ICFO - The Institute of Photonic Sciences, Spain
  4. Ecole Normal Superieure, France

Abstract

We have previously shown TANGO1 organises membranes at the interface of the endoplasmic reticulum (ER) and ERGIC/Golgi (Raote et al., 2018). TANGO1 corrals retrograde membranes at ER exit sites to create an export conduit. Here the retrograde membrane is, in itself, an anterograde carrier. This mode of forward transport necessitates a mechanism to prevent membrane mixing between ER and the retrograde membrane. TANGO1 has an unusual membrane helix organisation, composed of one membrane-spanning helix (TM) and another that penetrates the inner leaflet (IM). We have reconstituted these membrane helices in model membranes and shown that TM and IM together reduce the flow of lipids at a region of defined shape. We have also shown that the helices align TANGO1 around an ER exit site. We suggest this is a mechanism to prevent membrane mixing during TANGO1-mediated transfer of bulky secretory cargos from the ER to the ERGIC/Golgi via a tunnel.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Ishier Raote

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    ishier.raote@crg.eu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5898-4896
  2. Andreas M Ernst

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  3. Felix Campelo

    ICFO - The Institute of Photonic Sciences, Barcelona, Spain
    Competing interests
    Felix Campelo, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0786-9548
  4. James E Rothman

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8653-8650
  5. Frederic Pincet

    Laboratoire de Physique de l'Ecole Normale Supérieure, Ecole Normal Superieure, Paris, France
    For correspondence
    frederic.pincet@ens.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4243-2157
  6. Vivek Malhotra

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    vivek.malhotra@crg.eu
    Competing interests
    Vivek Malhotra, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6198-7943

Funding

Ministerio de Economía y Competitividad (SEV-2012-0208)

  • Ishier Raote
  • Vivek Malhotra

Generalitat de Catalunya (CERCA)

  • Felix Campelo

Ministerio de Economía y Competitividad (BFU2013-44188-P)

  • Ishier Raote
  • Vivek Malhotra

Ministerio de Economía y Competitividad (CSD2009-00016)

  • Ishier Raote
  • Vivek Malhotra

Ministerio de Economía y Competitividad (IJCI-2017-34751)

  • Ishier Raote

National Institutes of Health (R35 GM118084)

  • James E Rothman

Ministerio de Economía y Competitividad (SEV-2015-0522)

  • Felix Campelo

Ministerio de Economía y Competitividad (RYC-2017-22227)

  • Felix Campelo

Fundacio Privada Cellex

  • Felix Campelo

Fundacio Privada Mir-Puig

  • Felix Campelo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Adam Linstedt, Carnegie Mellon University, United States

Version history

  1. Received: April 15, 2020
  2. Accepted: May 21, 2020
  3. Accepted Manuscript published: May 26, 2020 (version 1)
  4. Version of Record published: June 2, 2020 (version 2)

Copyright

© 2020, Raote et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,946
    views
  • 493
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ishier Raote
  2. Andreas M Ernst
  3. Felix Campelo
  4. James E Rothman
  5. Frederic Pincet
  6. Vivek Malhotra
(2020)
TANGO1 membrane helices create a lipid diffusion barrier at curved membranes
eLife 9:e57822.
https://doi.org/10.7554/eLife.57822

Share this article

https://doi.org/10.7554/eLife.57822

Further reading

    1. Cell Biology
    Mathieu C Husser, Nhat P Pham ... Alisa Piekny
    Tools and Resources

    Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.