Functional links between sensory representations, choice activity, and sensorimotor associations in parietal cortex

  1. Ting-Yu Chang
  2. Raymond Doudlah
  3. Byounghoon Kim
  4. Adhira Sunkara
  5. Lowell W Thompson
  6. Meghan E Lowe
  7. Ari Rosenberg  Is a corresponding author
  1. University of Wisconsin - Madison, United States
  2. WiSys Technology Foundation, United States

Abstract

Three-dimensional (3D) representations of the environment are often critical for selecting actions that achieve desired goals. The success of these goal-directed actions relies on 3D sensorimotor transformations that are experience-dependent. Here we investigated the relationships between the robustness of 3D visual representations, choice-related activity, and motor-related activity in parietal cortex. Macaque monkeys performed an eight-alternative 3D orientation discrimination task and a visually guided saccade task while we recorded from the caudal intraparietal area using laminar probes. We found that neurons with more robust 3D visual representations preferentially carried choice-related activity. Following the onset of choice-related activity, the robustness of the 3D representations further increased for those neurons. We additionally found that 3D orientation and saccade direction preferences aligned, particularly for neurons with choice-related activity, reflecting an experience-dependent sensorimotor association. These findings reveal previously unrecognized links between the fidelity of ecologically relevant object representations, choice-related activity, and motor-related activity.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Ting-Yu Chang

    Neuroscience, University of Wisconsin - Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3964-0905
  2. Raymond Doudlah

    Neuroscience, University of Wisconsin - Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Byounghoon Kim

    Neuroscience, University of Wisconsin - Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7159-5134
  4. Adhira Sunkara

    WiSys Technology Foundation, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lowell W Thompson

    Neuroscience, University of Wisconsin - Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Meghan E Lowe

    Neuroscience, University of Wisconsin - Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ari Rosenberg

    Neuroscience, University of Wisconsin - Madison, Madison, United States
    For correspondence
    ari.rosenberg@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8606-2987

Funding

Alfred P. Sloan Foundation (FG-2016-6468)

  • Ari Rosenberg

Whitehall Foundation (2016-08-18)

  • Ari Rosenberg

Greater Milwaukee Foundation (Shaw Scientist Award)

  • Ari Rosenberg

National Institutes of Health (EY029438)

  • Ari Rosenberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations of the National Institutes of Health's Guide for the Care and Use of Laboratory Animals. All experimental procedures and surgeries were approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Wisconsin-Madison (Protocol #: G005229).

Copyright

© 2020, Chang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,444
    views
  • 183
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ting-Yu Chang
  2. Raymond Doudlah
  3. Byounghoon Kim
  4. Adhira Sunkara
  5. Lowell W Thompson
  6. Meghan E Lowe
  7. Ari Rosenberg
(2020)
Functional links between sensory representations, choice activity, and sensorimotor associations in parietal cortex
eLife 9:e57968.
https://doi.org/10.7554/eLife.57968

Share this article

https://doi.org/10.7554/eLife.57968

Further reading

    1. Neuroscience
    Gyeong Hee Pyeon, Hyewon Cho ... Yong Sang Jo
    Research Article Updated

    Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neurons during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, and ensuring adaptive responses to varying levels of danger.

    1. Neuroscience
    Alessandro Piccin, Anne-Emilie Allain ... Angelo Contarino
    Research Article

    Substance-induced social behavior deficits dramatically worsen the clinical outcome of substance use disorders; yet, the underlying mechanisms remain poorly understood. Herein, we investigated the role for the corticotropin-releasing factor receptor 1 (CRF1) in the acute sociability deficits induced by morphine and the related activity of oxytocin (OXY)- and arginine-vasopressin (AVP)-expressing neurons of the paraventricular nucleus of the hypothalamus (PVN). For this purpose, we used both the CRF1 receptor-preferring antagonist compound antalarmin and the genetic mouse model of CRF1 receptor-deficiency. Antalarmin completely abolished sociability deficits induced by morphine in male, but not in female, C57BL/6J mice. Accordingly, genetic CRF1 receptor-deficiency eliminated morphine-induced sociability deficits in male mice. Ex vivo electrophysiology studies showed that antalarmin also eliminated morphine-induced firing of PVN neurons in male, but not in female, C57BL/6J mice. Likewise, genetic CRF1 receptor-deficiency reduced morphine-induced firing of PVN neurons in a CRF1 gene expression-dependent manner. The electrophysiology results consistently mirrored the behavioral results, indicating a link between morphine-induced PVN activity and sociability deficits. Interestingly, in male mice antalarmin abolished morphine-induced firing in neurons co-expressing OXY and AVP, but not in neurons expressing only AVP. In contrast, in female mice antalarmin did not affect morphine-induced firing of neurons co-expressing OXY and AVP or only OXY, indicating a selective sex-specific role for the CRF1 receptor in opiate-induced PVN OXY activity. The present findings demonstrate a major, sex-linked, role for the CRF1 receptor in sociability deficits and related brain alterations induced by morphine, suggesting new therapeutic strategy for opiate use disorders.