The RIF1-Long splice variant promotes G1 phase 53BP1 nuclear bodies to protect against replication stress

  1. Lotte P Watts
  2. Toyoaki Natsume
  3. Yuichiro Saito
  4. Javier Garzon
  5. Qianqian Dong
  6. Lora Boteva
  7. Nick Gilbert
  8. Masato T Kanemaki
  9. Shin-ichiro Hiraga
  10. Anne D Donaldson  Is a corresponding author
  1. University of Aberdeen Institute of Medical Sciences, United Kingdom
  2. National Institute of Genetics, Japan
  3. University of Edinburgh, United Kingdom

Abstract

Human cells lacking RIF1 are highly sensitive to replication inhibitors, but the reasons for this sensitivity have been enigmatic. Here we show that RIF1 must be present both during replication stress and in the ensuing recovery period to promote cell survival. Of two isoforms produced by alternative splicing, we find that RIF1-Long alone can protect cells against replication inhibition, but RIF1-Short is incapable of mediating protection. Consistent with this isoform-specific role, RIF1-Long is required to promote the formation of the 53BP1 nuclear bodies that protect unrepaired damage sites in the G1 phase following replication stress. Overall, our observations show that RIF1 is needed at several cell cycle stages after replication insult, with the RIF1-Long isoform playing a specific role during the ensuing G1 phase in damage site protection.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Lotte P Watts

    Institute of Medical Sciences, University of Aberdeen Institute of Medical Sciences, Aberdeen, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Toyoaki Natsume

    Division of Molecular Cell Engineering, National Institute of Genetics, Mishima, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3544-4491
  3. Yuichiro Saito

    Chromosome Science, National Institute of Genetics, Mishima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Javier Garzon

    Institute of Medical Sciences, University of Aberdeen Institute of Medical Sciences, Aberdeen, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Qianqian Dong

    Institute of Medical Sciences, University of Aberdeen Institute of Medical Sciences, Aberdeen, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Lora Boteva

    Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Nick Gilbert

    Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Masato T Kanemaki

    Department of Chromosome Science,, National Institute of Genetics, Mishima, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7657-1649
  9. Shin-ichiro Hiraga

    Institute of Medical Sciences, University of Aberdeen Institute of Medical Sciences, Aberdeen, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Anne D Donaldson

    Institute of Medical Sciences, University of Aberdeen Institute of Medical Sciences, Aberdeen, United Kingdom
    For correspondence
    a.d.donaldson@abdn.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7842-8136

Funding

Cancer Research UK (C1445/A20596)

  • Anne D Donaldson

Cancer Research UK (C1445/A19059)

  • Anne D Donaldson

Japan Society for the Promotion of Science (17K15068)

  • Masato T Kanemaki

Japan Society for the Promotion of Science (18H02170)

  • Masato T Kanemaki

Japan Society for the Promotion of Science (18H04719)

  • Masato T Kanemaki

Medical Research Council (MC_UU_00007/13)

  • Nick Gilbert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Raymund J Wellinger, Fac Medecine/Université de Sherbrooke, Canada

Version history

  1. Received: April 17, 2020
  2. Accepted: November 2, 2020
  3. Accepted Manuscript published: November 3, 2020 (version 1)
  4. Version of Record published: November 17, 2020 (version 2)

Copyright

© 2020, Watts et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,019
    views
  • 311
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lotte P Watts
  2. Toyoaki Natsume
  3. Yuichiro Saito
  4. Javier Garzon
  5. Qianqian Dong
  6. Lora Boteva
  7. Nick Gilbert
  8. Masato T Kanemaki
  9. Shin-ichiro Hiraga
  10. Anne D Donaldson
(2020)
The RIF1-Long splice variant promotes G1 phase 53BP1 nuclear bodies to protect against replication stress
eLife 9:e58020.
https://doi.org/10.7554/eLife.58020

Share this article

https://doi.org/10.7554/eLife.58020

Further reading

    1. Cell Biology
    Ruichen Yang, Hongshang Chu ... Baojie Li
    Research Article

    Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.