Complementary α-arrestin-ubiquitin ligase complexes control nutrient transporter endocytosis in response to amino acids

  1. Vasyl Ivashov
  2. Johannes Zimmer
  3. Sinead Schwabl
  4. Jennifer Kahlhofer
  5. Sabine Weys
  6. Ronald Gstir
  7. Thomas Jackschitz
  8. Leopold Kremser
  9. Günther K Bonn
  10. Herbert Lindner
  11. Lukas A Huber
  12. Sebastien Leon
  13. Oliver Schmidt  Is a corresponding author
  14. David Teis
  1. Medical University of Innsbruck, Austria
  2. ADSI - Austrian Drug Screening Institute GmbH, Austria
  3. Université Paris-Diderot, France

Abstract

How cells adjust nutrient transport across their membranes is incompletely understood. Previously, we have shown that S. cerevisiae broadly re-configures the nutrient transporters at the plasma membrane in response to amino acid availability, through endocytosis of sugar- and amino acid transporters (AATs) (Müller et al., 2015). A genome-wide screen now revealed that the selective endocytosis of four AATs during starvation required the α-arrestin family protein Art2/Ecm21, an adaptor for the ubiquitin ligase Rsp5, and its induction through the general amino acid control pathway. Art2 uses a basic patch to recognize C-terminal acidic sorting motifs in AATs and thereby instructs Rsp5 to ubiquitinate proximal lysine residues. When amino acids are in excess, Rsp5 instead uses TORC1-activated Art1 to detect N-terminal acidic sorting motifs within the same AATs, which initiates exclusive substrate-induced endocytosis. Thus, amino acid excess or starvation activate complementary α-arrestin-Rsp5-complexes to control selective endocytosis and adapt nutrient acquisition.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Vasyl Ivashov

    Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Johannes Zimmer

    Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Sinead Schwabl

    Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Jennifer Kahlhofer

    Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Sabine Weys

    Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Ronald Gstir

    ADSI - Austrian Drug Screening Institute GmbH, ADSI - Austrian Drug Screening Institute GmbH, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas Jackschitz

    ADSI - Austrian Drug Screening Institute GmbH, ADSI - Austrian Drug Screening Institute GmbH, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Leopold Kremser

    Division of Clinical Biochemistry, ProteinMicroAnalysis Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Günther K Bonn

    ADSI - Austrian Drug Screening Institute GmbH, ADSI - Austrian Drug Screening Institute GmbH, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  10. Herbert Lindner

    Division of Clinical Biochemistry, ProteinMicroAnalysis Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  11. Lukas A Huber

    Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  12. Sebastien Leon

    Institut Jacques Monod, Université Paris-Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2536-8595
  13. Oliver Schmidt

    Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    For correspondence
    oliver.schmidt@i-med.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7921-4663
  14. David Teis

    Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8181-0253

Funding

European Molecular Biology Organization (ALTF 642-2012)

  • Oliver Schmidt

European Molecular Biology Organization (EMBOCOFUND2010)

  • Oliver Schmidt

European Molecular Biology Organization (GA-2010-267146)

  • Oliver Schmidt

Tiroler Wissenschaftsfond (2015)

  • Oliver Schmidt

Austrian Science Fund (FWF-Y444-B12)

  • David Teis

Austrian Science Fund (P30263)

  • David Teis

Austrian Science Fund (P29583)

  • David Teis

Agence Nationale de la Recherche (ANR-16-CE13-0002-01)

  • Sebastien Leon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Ivashov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,369
    views
  • 375
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vasyl Ivashov
  2. Johannes Zimmer
  3. Sinead Schwabl
  4. Jennifer Kahlhofer
  5. Sabine Weys
  6. Ronald Gstir
  7. Thomas Jackschitz
  8. Leopold Kremser
  9. Günther K Bonn
  10. Herbert Lindner
  11. Lukas A Huber
  12. Sebastien Leon
  13. Oliver Schmidt
  14. David Teis
(2020)
Complementary α-arrestin-ubiquitin ligase complexes control nutrient transporter endocytosis in response to amino acids
eLife 9:e58246.
https://doi.org/10.7554/eLife.58246

Share this article

https://doi.org/10.7554/eLife.58246

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.