Complementary α-arrestin-ubiquitin ligase complexes control nutrient transporter endocytosis in response to amino acids

  1. Vasyl Ivashov
  2. Johannes Zimmer
  3. Sinead Schwabl
  4. Jennifer Kahlhofer
  5. Sabine Weys
  6. Ronald Gstir
  7. Thomas Jakschitz
  8. Leopold Kremser
  9. Günther K Bonn
  10. Herbert Lindner
  11. Lukas A Huber
  12. Sebastien Leon
  13. Oliver Schmidt  Is a corresponding author
  14. David Teis
  1. Medical University of Innsbruck, Austria
  2. ADSI - Austrian Drug Screening Institute GmbH, Austria
  3. Université Paris-Diderot, France

Abstract

How cells adjust nutrient transport across their membranes is incompletely understood. Previously, we have shown that S. cerevisiae broadly re-configures the nutrient transporters at the plasma membrane in response to amino acid availability, through endocytosis of sugar- and amino acid transporters (AATs) (Müller et al., 2015). A genome-wide screen now revealed that the selective endocytosis of four AATs during starvation required the α-arrestin family protein Art2/Ecm21, an adaptor for the ubiquitin ligase Rsp5, and its induction through the general amino acid control pathway. Art2 uses a basic patch to recognize C-terminal acidic sorting motifs in AATs and thereby instructs Rsp5 to ubiquitinate proximal lysine residues. When amino acids are in excess, Rsp5 instead uses TORC1-activated Art1 to detect N-terminal acidic sorting motifs within the same AATs, which initiates exclusive substrate-induced endocytosis. Thus, amino acid excess or starvation activate complementary α-arrestin-Rsp5-complexes to control selective endocytosis and adapt nutrient acquisition.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Vasyl Ivashov

    Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Johannes Zimmer

    Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Sinead Schwabl

    Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Jennifer Kahlhofer

    Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Sabine Weys

    Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Ronald Gstir

    ADSI - Austrian Drug Screening Institute GmbH, ADSI - Austrian Drug Screening Institute GmbH, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas Jakschitz

    ADSI - Austrian Drug Screening Institute GmbH, ADSI - Austrian Drug Screening Institute GmbH, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Leopold Kremser

    Division of Clinical Biochemistry, ProteinMicroAnalysis Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Günther K Bonn

    ADSI - Austrian Drug Screening Institute GmbH, ADSI - Austrian Drug Screening Institute GmbH, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  10. Herbert Lindner

    Division of Clinical Biochemistry, ProteinMicroAnalysis Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  11. Lukas A Huber

    Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  12. Sebastien Leon

    Institut Jacques Monod, Université Paris-Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2536-8595
  13. Oliver Schmidt

    Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    For correspondence
    oliver.schmidt@i-med.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7921-4663
  14. David Teis

    Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8181-0253

Funding

European Molecular Biology Organization (ALTF 642-2012)

  • Oliver Schmidt

European Molecular Biology Organization (EMBOCOFUND2010)

  • Oliver Schmidt

European Molecular Biology Organization (GA-2010-267146)

  • Oliver Schmidt

Tiroler Wissenschaftsfond (2015)

  • Oliver Schmidt

Austrian Science Fund (FWF-Y444-B12)

  • David Teis

Austrian Science Fund (P30263)

  • David Teis

Austrian Science Fund (P29583)

  • David Teis

Agence Nationale de la Recherche (ANR-16-CE13-0002-01)

  • Sebastien Leon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Ivashov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,326
    views
  • 367
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vasyl Ivashov
  2. Johannes Zimmer
  3. Sinead Schwabl
  4. Jennifer Kahlhofer
  5. Sabine Weys
  6. Ronald Gstir
  7. Thomas Jakschitz
  8. Leopold Kremser
  9. Günther K Bonn
  10. Herbert Lindner
  11. Lukas A Huber
  12. Sebastien Leon
  13. Oliver Schmidt
  14. David Teis
(2020)
Complementary α-arrestin-ubiquitin ligase complexes control nutrient transporter endocytosis in response to amino acids
eLife 9:e58246.
https://doi.org/10.7554/eLife.58246

Share this article

https://doi.org/10.7554/eLife.58246

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.

    1. Cell Biology
    Parijat Biswas, Priyanka Roy ... Deepak Kumar Sinha
    Research Article

    The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favouring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with Nuclear Factor Kappa Beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that Tumour Necrosis Factor Receptor 1 (TNFR1) initiates the hypertonicity induced NFkB signalling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders Receptor Interacting Protein Kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signalling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signalling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.