Dopamine promotes instrumental motivation, but reduces reward-related vigour

  1. John P Grogan  Is a corresponding author
  2. Timothy R Sandhu
  3. Michele T Hu
  4. Sanjay G Manohar
  1. University of Oxford, United Kingdom
  2. University of Cambridge, United Kingdom

Abstract

We can be motivated when reward depends on performance, or merely by the prospect of a guaranteed reward. Performance-dependent (contingent) reward is instrumental, relying on an internal action-outcome model, whereas motivation by guaranteed reward may minimise opportunity cost in reward-rich environments. Competing theories propose that each type of motivation should be dependent on dopaminergic activity. We contrasted these two types of motivation with a rewarded saccade task, in patients with Parkinson’s disease (PD). When PD patients were ON dopamine, they had greater response vigour (peak saccadic velocity residuals) for contingent rewards, whereas when PD patients were OFF medication, they had greater vigour for guaranteed rewards. These results support the view that reward expectation and contingency drive distinct motivational processes, and can be dissociated by manipulating dopaminergic activity. We posit that dopamine promotes goal-directed motivation, but dampens reward-driven vigour, contradictory to the prediction that increased tonic dopamine amplifies reward expectation

Data availability

Anonymised data are available on OSF (https://osf.io/2k6x3)

The following data sets were generated

Article and author information

Author details

  1. John P Grogan

    Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
    For correspondence
    john.grogan@ndcn.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0463-8904
  2. Timothy R Sandhu

    Department of Psychology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Michele T Hu

    Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
    Competing interests
    Michele T Hu, MTH is a consultant advisor to the Roche Prodromal Advisory, Biogen Digital Advisory Board, Evidera, and CuraSen Therapeutics, Inc..
  4. Sanjay G Manohar

    Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0735-4349

Funding

MRC (MR/P00878X)

  • Sanjay G Manohar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethical approval was granted by the South Central Oxford A REC (18/SC/0448). All participants gave written informed consent.

Copyright

© 2020, Grogan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,992
    views
  • 418
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. John P Grogan
  2. Timothy R Sandhu
  3. Michele T Hu
  4. Sanjay G Manohar
(2020)
Dopamine promotes instrumental motivation, but reduces reward-related vigour
eLife 9:e58321.
https://doi.org/10.7554/eLife.58321

Share this article

https://doi.org/10.7554/eLife.58321

Further reading

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.