Dopamine promotes instrumental motivation, but reduces reward-related vigour

  1. John P Grogan  Is a corresponding author
  2. Timothy R Sandhu
  3. Michele T Hu
  4. Sanjay G Manohar
  1. University of Oxford, United Kingdom
  2. University of Cambridge, United Kingdom

Abstract

We can be motivated when reward depends on performance, or merely by the prospect of a guaranteed reward. Performance-dependent (contingent) reward is instrumental, relying on an internal action-outcome model, whereas motivation by guaranteed reward may minimise opportunity cost in reward-rich environments. Competing theories propose that each type of motivation should be dependent on dopaminergic activity. We contrasted these two types of motivation with a rewarded saccade task, in patients with Parkinson’s disease (PD). When PD patients were ON dopamine, they had greater response vigour (peak saccadic velocity residuals) for contingent rewards, whereas when PD patients were OFF medication, they had greater vigour for guaranteed rewards. These results support the view that reward expectation and contingency drive distinct motivational processes, and can be dissociated by manipulating dopaminergic activity. We posit that dopamine promotes goal-directed motivation, but dampens reward-driven vigour, contradictory to the prediction that increased tonic dopamine amplifies reward expectation

Data availability

Anonymised data are available on OSF (https://osf.io/2k6x3)

The following data sets were generated

Article and author information

Author details

  1. John P Grogan

    Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
    For correspondence
    john.grogan@ndcn.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0463-8904
  2. Timothy R Sandhu

    Department of Psychology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Michele T Hu

    Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
    Competing interests
    Michele T Hu, MTH is a consultant advisor to the Roche Prodromal Advisory, Biogen Digital Advisory Board, Evidera, and CuraSen Therapeutics, Inc..
  4. Sanjay G Manohar

    Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0735-4349

Funding

MRC (MR/P00878X)

  • Sanjay G Manohar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethical approval was granted by the South Central Oxford A REC (18/SC/0448). All participants gave written informed consent.

Reviewing Editor

  1. Shelly B Flagel, University of Michigan, United States

Publication history

  1. Received: April 27, 2020
  2. Accepted: September 30, 2020
  3. Accepted Manuscript published: October 1, 2020 (version 1)
  4. Version of Record published: October 30, 2020 (version 2)
  5. Version of Record updated: November 30, 2020 (version 3)

Copyright

© 2020, Grogan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,674
    Page views
  • 274
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. John P Grogan
  2. Timothy R Sandhu
  3. Michele T Hu
  4. Sanjay G Manohar
(2020)
Dopamine promotes instrumental motivation, but reduces reward-related vigour
eLife 9:e58321.
https://doi.org/10.7554/eLife.58321
  1. Further reading

Further reading

    1. Neuroscience
    Mingchao Yan et al.
    Tools and Resources

    Resolving trajectories of axonal pathways in the primate prefrontal cortex remains crucial to gain insights into higher-order processes of cognition and emotion, which requires a comprehensive map of axonal projections linking demarcated subdivisions of prefrontal cortex and the rest of brain. Here, we report a mesoscale excitatory projectome issued from the ventrolateral prefrontal cortex (vlPFC) to the entire macaque brain by using viral-based genetic axonal tracing in tandem with high-throughput serial two-photon tomography, which demonstrated prominent monosynaptic projections to other prefrontal areas, temporal, limbic, and subcortical areas, relatively weak projections to parietal and insular regions but no projections directly to the occipital lobe. In a common 3D space, we quantitatively validated an atlas of diffusion tractography-derived vlPFC connections with correlative green fluorescent protein-labeled axonal tracing, and observed generally good agreement except a major difference in the posterior projections of inferior fronto-occipital fasciculus. These findings raise an intriguing question as to how neural information passes along long-range association fiber bundles in macaque brains, and call for the caution of using diffusion tractography to map the wiring diagram of brain circuits.

    1. Medicine
    2. Neuroscience
    Simon Oxenford et al.
    Tools and Resources

    Background: Deep Brain Stimulation (DBS) electrode implant trajectories are stereotactically defined using preoperative neuroimaging. To validate the correct trajectory, microelectrode recordings (MER) or local field potential recordings (LFP) can be used to extend neuroanatomical information (defined by magnetic resonance imaging) with neurophysiological activity patterns recorded from micro- and macroelectrodes probing the surgical target site. Currently, these two sources of information (imaging vs. electrophysiology) are analyzed separately, while means to fuse both data streams have not been introduced.

    Methods: Here we present a tool that integrates resources from stereotactic planning, neuroimaging, MER and high-resolution atlas data to create a real-time visualization of the implant trajectory. We validate the tool based on a retrospective cohort of DBS patients (𝑁 = 52) offline and present single use cases of the real-time platform. Results: We establish an open-source software tool for multimodal data visualization and analysis during DBS surgery. We show a general correspondence between features derived from neuroimaging and electrophysiological recordings and present examples that demonstrate the functionality of the tool.

    Conclusions: This novel software platform for multimodal data visualization and analysis bears translational potential to improve accuracy of DBS surgery. The toolbox is made openly available and is extendable to integrate with additional software packages.

    Funding: Deutsche Forschungsgesellschaft (410169619, 424778381), Deutsches Zentrum für Luftund Raumfahrt (DynaSti), National Institutes of Health (2R01 MH113929), Foundation for OCD Research (FFOR).