A Mendelian randomization study of the role of lipoprotein subfractions in coronary artery disease

  1. Qingyuan Zhao  Is a corresponding author
  2. Jingshu Wang
  3. Zhen Miao
  4. Nancy R Zhang
  5. Sean Hennessy
  6. Dylan S Small
  7. Daniel J Rader
  1. University of Cambridge, United Kingdom
  2. University of Chicago, United States
  3. University of Pennsylvania, United States

Abstract

Recent genetic data can offer important insights into the roles of lipoprotein subfractions and particle sizes in preventing coronary artery disease (CAD), as previous observational studies have often reported conflicting results. We used the LD score regression to estimate the genetic correlation of 77 subfraction traits with traditional lipid profile and identified 27 traits that may represent distinct genetic mechanisms. We then used Mendelian randomization (MR) to estimate the causal effect of these traits on the risk of CAD. In univariable MR, the concentration and content of medium high-density lipoprotein (HDL) particles showed a protective effect against CAD. The effect was not attenuated in multivariable analyses. Multivariable MR analyses also found that small HDL particles and smaller mean HDL particle diameter may have a protective effect. We identified four genetic markers for HDL particle size and CAD. Further investigations are needed to fully understand the role of HDL particle size.

Data availability

GWAS data used in the data are publicly available. Details can be found in Table 1.

The following previously published data sets were used

Article and author information

Author details

  1. Qingyuan Zhao

    Statistical Laboratory, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    qyzhao@statslab.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9902-2768
  2. Jingshu Wang

    Department of Statistics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Zhen Miao

    Genomics and Computational Biology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3255-9517
  4. Nancy R Zhang

    Department of Statistics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sean Hennessy

    Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Dylan S Small

    Department of Statistics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4928-2646
  7. Daniel J Rader

    Department of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

No external funding was received for this work.

Reviewing Editor

  1. Edward D Janus, University of Melbourne, Australia

Version history

  1. Received: April 28, 2020
  2. Accepted: April 23, 2021
  3. Accepted Manuscript published: April 26, 2021 (version 1)
  4. Version of Record published: May 28, 2021 (version 2)

Copyright

© 2021, Zhao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,049
    views
  • 247
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qingyuan Zhao
  2. Jingshu Wang
  3. Zhen Miao
  4. Nancy R Zhang
  5. Sean Hennessy
  6. Dylan S Small
  7. Daniel J Rader
(2021)
A Mendelian randomization study of the role of lipoprotein subfractions in coronary artery disease
eLife 10:e58361.
https://doi.org/10.7554/eLife.58361

Share this article

https://doi.org/10.7554/eLife.58361

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Donghui Yan, Bowen Hu ... Qiongshi Lu
    Research Article

    Rich data from large biobanks, coupled with increasingly accessible association statistics from genome-wide association studies (GWAS), provide great opportunities to dissect the complex relationships among human traits and diseases. We introduce BADGERS, a powerful method to perform polygenic score-based biobank-wide association scans. Compared to traditional approaches, BADGERS uses GWAS summary statistics as input and does not require multiple traits to be measured in the same cohort. We applied BADGERS to two independent datasets for late-onset Alzheimer’s disease (AD; n=61,212). Among 1738 traits in the UK biobank, we identified 48 significant associations for AD. Family history, high cholesterol, and numerous traits related to intelligence and education showed strong and independent associations with AD. Furthermore, we identified 41 significant associations for a variety of AD endophenotypes. While family history and high cholesterol were strongly associated with AD subgroups and pathologies, only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These results provide novel insights into the distinct biological processes underlying various risk factors for AD.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Jason E Stajich, Brian Lovett ... Carolyn Elya
    Research Article

    Despite over a century of observations, the obligate insect parasites within the order Entomophthorales remain poorly characterized at the genetic level. In this manuscript, we present a genome for a laboratory-tractable Entomophthora muscae isolate that infects fruit flies. Our E. muscae assembly is 1.03 Gb, consists of 7810 contigs and contains 81.3% complete fungal BUSCOs. Using a comparative approach with recent datasets from entomophthoralean fungi, we show that giant genomes are the norm within Entomophthoraceae owing to extensive, but not recent, Ty3 retrotransposon activity. In addition, we find that E. muscae and its closest allies possess genes that are likely homologs to the blue-light sensor white-collar 1, a Neurospora crassa gene that has a well-established role in maintaining circadian rhythms. We uncover evidence that E. muscae diverged from other entomophthoralean fungi by expansion of existing families, rather than loss of particular domains, and possesses a potentially unique suite of secreted catabolic enzymes, consistent with E. muscae’s species-specific, biotrophic lifestyle. Finally, we offer a head-to-head comparison of morphological and molecular data for species within the E. muscae species complex that support the need for taxonomic revision within this group. Altogether, we provide a genetic and molecular foundation that we hope will provide a platform for the continued study of the unique biology of entomophthoralean fungi.