A Mendelian randomization study of the role of lipoprotein subfractions in coronary artery disease

  1. Qingyuan Zhao  Is a corresponding author
  2. Jingshu Wang
  3. Zhen Miao
  4. Nancy R Zhang
  5. Sean Hennessy
  6. Dylan S Small
  7. Daniel J Rader
  1. University of Cambridge, United Kingdom
  2. University of Chicago, United States
  3. University of Pennsylvania, United States

Abstract

Recent genetic data can offer important insights into the roles of lipoprotein subfractions and particle sizes in preventing coronary artery disease (CAD), as previous observational studies have often reported conflicting results. We used the LD score regression to estimate the genetic correlation of 77 subfraction traits with traditional lipid profile and identified 27 traits that may represent distinct genetic mechanisms. We then used Mendelian randomization (MR) to estimate the causal effect of these traits on the risk of CAD. In univariable MR, the concentration and content of medium high-density lipoprotein (HDL) particles showed a protective effect against CAD. The effect was not attenuated in multivariable analyses. Multivariable MR analyses also found that small HDL particles and smaller mean HDL particle diameter may have a protective effect. We identified four genetic markers for HDL particle size and CAD. Further investigations are needed to fully understand the role of HDL particle size.

Data availability

GWAS data used in the data are publicly available. Details can be found in Table 1.

The following previously published data sets were used

Article and author information

Author details

  1. Qingyuan Zhao

    Statistical Laboratory, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    qyzhao@statslab.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9902-2768
  2. Jingshu Wang

    Department of Statistics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Zhen Miao

    Genomics and Computational Biology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3255-9517
  4. Nancy R Zhang

    Department of Statistics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sean Hennessy

    Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Dylan S Small

    Department of Statistics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4928-2646
  7. Daniel J Rader

    Department of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

No external funding was received for this work.

Copyright

© 2021, Zhao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,300
    views
  • 274
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qingyuan Zhao
  2. Jingshu Wang
  3. Zhen Miao
  4. Nancy R Zhang
  5. Sean Hennessy
  6. Dylan S Small
  7. Daniel J Rader
(2021)
A Mendelian randomization study of the role of lipoprotein subfractions in coronary artery disease
eLife 10:e58361.
https://doi.org/10.7554/eLife.58361

Share this article

https://doi.org/10.7554/eLife.58361

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Omid Gholamalamdari, Tom van Schaik ... Andrew S Belmont
    Research Article

    Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.