1. Genetics and Genomics
  2. Medicine
Download icon

A Mendelian randomization study of the role of lipoprotein subfractions in coronary artery disease

  1. Qingyuan Zhao  Is a corresponding author
  2. Jingshu Wang
  3. Zhen Miao
  4. Nancy R Zhang
  5. Sean Hennessy
  6. Dylan S Small
  7. Daniel J Rader
  1. University of Cambridge, United Kingdom
  2. University of Chicago, United States
  3. University of Pennsylvania, United States
Research Article
  • Cited 0
  • Views 155
  • Annotations
Cite this article as: eLife 2021;10:e58361 doi: 10.7554/eLife.58361

Abstract

Recent genetic data can offer important insights into the roles of lipoprotein subfractions and particle sizes in preventing coronary artery disease (CAD), as previous observational studies have often reported conflicting results. We used the LD score regression to estimate the genetic correlation of 77 subfraction traits with traditional lipid profile and identified 27 traits that may represent distinct genetic mechanisms. We then used Mendelian randomization (MR) to estimate the causal effect of these traits on the risk of CAD. In univariable MR, the concentration and content of medium high-density lipoprotein (HDL) particles showed a protective effect against CAD. The effect was not attenuated in multivariable analyses. Multivariable MR analyses also found that small HDL particles and smaller mean HDL particle diameter may have a protective effect. We identified four genetic markers for HDL particle size and CAD. Further investigations are needed to fully understand the role of HDL particle size.

Data availability

GWAS data used in the data are publicly available. Details can be found in Table 1.

The following previously published data sets were used

Article and author information

Author details

  1. Qingyuan Zhao

    Statistical Laboratory, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    qyzhao@statslab.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9902-2768
  2. Jingshu Wang

    Department of Statistics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Zhen Miao

    Genomics and Computational Biology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3255-9517
  4. Nancy R Zhang

    Department of Statistics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sean Hennessy

    Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Dylan S Small

    Department of Statistics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4928-2646
  7. Daniel J Rader

    Department of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

No external funding was received for this work.

Reviewing Editor

  1. Edward D Janus, University of Melbourne, Australia

Publication history

  1. Received: April 28, 2020
  2. Accepted: April 23, 2021
  3. Accepted Manuscript published: April 26, 2021 (version 1)

Copyright

© 2021, Zhao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 155
    Page views
  • 35
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Sibylle Mitschka, Christine Mayr
    Research Article

    The TP53 gene encodes the tumor suppressor p53 which is functionally inactivated in many human cancers. Numerous studies suggested that 3′UTR-mediated p53 expression regulation plays a role in tumorigenesis and could be exploited for therapeutic purposes. However, these studies did not investigate post-transcriptional regulation of the native TP53 gene. Here, we used CRISPR/Cas9 to delete the human and mouse TP53/Trp53 3′UTRs while preserving endogenous mRNA processing. This revealed that the endogenous 3′UTR is not involved in regulating p53 mRNA or protein expression neither in steady state nor after genotoxic stress. Using reporter assays, we confirmed the previously observed repressive effects of the isolated 3′UTR. However, addition of the TP53 coding region to the reporter had a dominant negative impact on expression as its repressive effect was stronger and abrogated the contribution of the 3′UTR. Our data highlight the importance of genetic models in the validation of post-transcriptional gene regulatory effects.

    1. Genetics and Genomics
    Paolo Garagnani et al.
    Research Article

    Extreme longevity is the paradigm of healthy aging as individuals who reached the extreme decades of human life avoided or largely postponed all major age-related diseases. In this study, we sequenced at high coverage (90X) the whole genome of 81 semi-supercentenarians and supercentenarians [105+/110+] (mean age: 106.6 ± 1.6) and of 36 healthy unrelated geographically matched controls (mean age 68.0 ± 5.9) recruited in Italy. The results showed that 105+/110+ are characterized by a peculiar genetic background associated with efficient DNA repair mechanisms, as evidenced by both germline data (common and rare variants) and somatic mutations patterns (lower mutation load if compared to younger healthy controls). Results were replicated in a second independent cohort of 333 Italian centenarians and 358 geographically matched controls. The genetics of 105+/110+ identified DNA repair and clonal haematopoiesis as crucial players for healthy aging and for the protection from cardiovascular events.