1. Cell Biology
  2. Microbiology and Infectious Disease
Download icon

Electron tomography visualization of HIV-1 fusion with target cells using inhibitors to trap the prehairpin intermediate

  1. Mark S Ladinsky
  2. Priyanthi N P Gnanapragasam
  3. Zhi Yang
  4. Anthony P West
  5. Michael S Kay
  6. Pamela J Bjorkman  Is a corresponding author
  1. California Institute of Technology, United States
  2. University of Utah School of Medicine, United States
Research Article
  • Cited 0
  • Views 539
  • Annotations
Cite this article as: eLife 2020;9:e58411 doi: 10.7554/eLife.58411

Abstract

Fusion of HIV-1 with the membrane of its target cell, an obligate first step in virus infectivity, is mediated by binding of the viral envelope (Env) spike protein to its receptors, CD4 and CCR5/CXCR4, on the cell surface. The process of viral fusion appears to be fast compared with viral egress and has not been visualized by EM. To capture fusion events, the process must be curtailed by trapping Env-receptor binding at an intermediate stage. We have used fusion inhibitors to trap HIV-1 virions attached to target cells by Envs in an extended pre-hairpin intermediate state. Electron tomography revealed HIV-1 virions bound to TZM-bl cells by 2-4 narrow spokes, with slightly more spokes present when evaluated with mutant virions that lacked the Env cytoplasmic tail. These results represent the first direct visualization of the hypothesized pre-hairpin intermediate of HIV-1 Env and improve our understanding of Env-mediated HIV-1 fusion and infection of host cells.

Article and author information

Author details

  1. Mark S Ladinsky

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  2. Priyanthi N P Gnanapragasam

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  3. Zhi Yang

    Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  4. Anthony P West

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  5. Michael S Kay

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3186-9684
  6. Pamela J Bjorkman

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    bjorkman@caltech.edu
    Competing interests
    Pamela J Bjorkman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2277-3990

Funding

National Institute of General Medical Sciences (2 P50 AI150464)

  • Michael S Kay
  • Pamela J Bjorkman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Axel T Brunger, Stanford University, United States

Publication history

  1. Received: April 29, 2020
  2. Accepted: July 21, 2020
  3. Accepted Manuscript published: July 22, 2020 (version 1)
  4. Version of Record published: July 31, 2020 (version 2)

Copyright

© 2020, Ladinsky et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 539
    Page views
  • 143
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Catherine G Triandafillou et al.
    Research Article

    Heat shock induces a conserved transcriptional program regulated by heat shock factor 1 (Hsf1) in eukaryotic cells. Activation of this heat shock response is triggered by heat-induced misfolding of newly synthesized polypeptides, and so has been thought to depend on ongoing protein synthesis. Here, using the budding yeast Saccharomyces cerevisiae, we report the discovery that Hsf1 can be robustly activated when protein synthesis is inhibited, so long as cells undergo cytosolic acidification. Heat shock has long been known to cause transient intracellular acidification which, for reasons which have remained unclear, is associated with increased stress resistance in eukaryotes. We demonstrate that acidification is required for heat shock response induction in translationally inhibited cells, and specifically affects Hsf1 activation. Physiological heat-triggered acidification also increases population fitness and promotes cell cycle reentry following heat shock. Our results uncover a previously unknown adaptive dimension of the well-studied eukaryotic heat shock response.

    1. Cell Biology
    Vasyl Ivashov et al.
    Research Article

    How cells adjust nutrient transport across their membranes is incompletely understood. Previously, we have shown that S. cerevisiae broadly re-configures the nutrient transporters at the plasma membrane in response to amino acid availability, through endocytosis of sugar- and amino acid transporters (AATs) (Müller et al., 2015). A genome-wide screen now revealed that the selective endocytosis of four AATs during starvation required the α-arrestin family protein Art2/Ecm21, an adaptor for the ubiquitin ligase Rsp5, and its induction through the general amino acid control pathway. Art2 uses a basic patch to recognize C-terminal acidic sorting motifs in AATs and thereby instructs Rsp5 to ubiquitinate proximal lysine residues. When amino acids are in excess, Rsp5 instead uses TORC1-activated Art1 to detect N-terminal acidic sorting motifs within the same AATs, which initiates exclusive substrate-induced endocytosis. Thus, amino acid excess or starvation activate complementary α-arrestin-Rsp5-complexes to control selective endocytosis and adapt nutrient acquisition.