Abstract

The extent of non-coding RNA alterations in patients with sepsis and their relationship to clinical characteristics, soluble mediators of the host response to infection, as well as an advocated in vivo model of acute systemic inflammation is unknown. Here, we obtained whole blood from 156 patients with sepsis and 82 healthy subjects among whom eight were challenged with lipopolysaccharide in a clinically controlled setting (human endotoxemia). Via next-generation microarray analysis of leukocyte RNA we found long non-coding RNA and, to a lesser extent small non-coding RNA, were significantly altered in sepsis relative to health. Long non-coding RNA expression, but not small non-coding RNA, were largely recapitulated in human endotoxemia. Integrating RNA profiles and plasma protein levels revealed known as well as previously unobserved pathways, including non-sensory olfactory receptor activity. We provide a benchmark dissection of the blood leukocyte 'regulome' that can facilitate prioritization of future functional studies.

Data availability

The datasets generated and analyzed in the current study are available in the Gene Expression Omnibus of the National Center for Biotechnology Information repository with primary data accession numbers GSE134364 (super-series), GSE134347 for patients and healthy volunteers (HTA 2.0 microarray), GSE134356 for the human endotoxemia model samples (HTA 2.0 microarray) and GSE134358 for all patients, healthy volunteers and human endotoxemia samples (miRNA-4.1 microarray).

Article and author information

Author details

  1. Brendon P Scicluna

    Center for Experimental Molecular Medicine, AMC, Amsterdam, Netherlands
    For correspondence
    b.scicluna@amc.uva.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2826-0341
  2. Fabrice Uhel

    Center for Experimental Molecular Medicine, AMC, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4946-8184
  3. Lonneke A van Vught

    Center for Experimental Molecular Medicine, AMC, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Maryse A Wiewel

    Center for Experimental Molecular Medicine, AMC, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Arie J Hoogendijk

    Center for Experimental Molecular Medicine, AMC, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Ingelore Baessman

    Cologne Center for Genomics, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Marek Franitza

    Cologne Center for Genomics, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Peter Nürnberg

    Cologne Center for Genomics, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Janneke Horn

    Intensive care medicine, AMC, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Olaf L Cremer

    Intensive care medicine, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Marc J Bonten

    Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  12. Marcus J Schultz

    Intensive care medicine, AMC, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  13. Tom van der Poll

    Infectious diseases, AMC, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  14. MARS consortium

Funding

Innovative Medicines Initiative (115523 | 115620 | 115737)

  • Marc J Bonten

Center for Translational Molecular Medicine (04I-201)

  • Tom van der Poll

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The institutional review boards of both participating centers approved an opt-out consent method (IRB No. 10-056C). The Dutch Central Committee on Research Involving Human Subjects and the Medical Ethics Committee of the Academic Medical Center, Amsterdam, the Netherlands, approved the study. Written informed consent was obtained from all healthy participants.

Copyright

© 2020, Scicluna et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,429
    views
  • 229
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brendon P Scicluna
  2. Fabrice Uhel
  3. Lonneke A van Vught
  4. Maryse A Wiewel
  5. Arie J Hoogendijk
  6. Ingelore Baessman
  7. Marek Franitza
  8. Peter Nürnberg
  9. Janneke Horn
  10. Olaf L Cremer
  11. Marc J Bonten
  12. Marcus J Schultz
  13. Tom van der Poll
  14. MARS consortium
(2020)
The leukocyte non-coding RNA landscape in critically ill patients with sepsis
eLife 9:e58597.
https://doi.org/10.7554/eLife.58597

Share this article

https://doi.org/10.7554/eLife.58597

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Angela L Rachubinski, Elizabeth Wallace ... Joaquín M Espinosa
    Research Article

    Background:

    Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmunity and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined.

    Methods:

    We report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS, including autoantibody profiling, cytokine analysis, and deep immune mapping. We also report the interim analysis of a Phase II clinical trial investigating the safety and efficacy of the JAK inhibitor tofacitinib through multiple clinical and molecular endpoints.

    Results:

    We demonstrate multi-organ autoimmunity of pediatric onset concurrent with unexpected autoantibody-phenotype associations in DS. Importantly, constitutive immune remodeling and hypercytokinemia occur from an early age prior to autoimmune diagnoses or autoantibody production. Analysis of the first 10 participants to complete 16 weeks of tofacitinib treatment shows a good safety profile and no serious adverse events. Treatment reduced skin pathology in alopecia areata, psoriasis, and atopic dermatitis, while decreasing interferon scores, cytokine scores, and levels of pathogenic autoantibodies without overt immune suppression.

    Conclusions:

    JAK inhibition is a valid strategy to treat autoimmune conditions in DS. Additional research is needed to define the effects of JAK inhibition on the broader developmental and clinical hallmarks of DS.

    Funding:

    NIAMS, Global Down Syndrome Foundation.

    Clinical trial number:

    NCT04246372.

    1. Immunology and Inflammation
    Nincy Debeuf, Sahine Lameire ... Bart N Lambrecht
    Research Article

    Since the precursor frequency of naive T cells is extremely low, investigating the early steps of antigen-specific T cell activation is challenging. To overcome this detection problem, adoptive transfer of a cohort of T cells purified from T cell receptor (TCR) transgenic donors has been extensively used but is not readily available for emerging pathogens. Constructing TCR transgenic mice from T cell hybridomas is a labor-intensive and sometimes erratic process, since the best clones are selected based on antigen-induced CD69 upregulation or IL-2 production in vitro, and TCR chains are polymerase chain reaction (PCR)-cloned into expression vectors. Here, we exploited the rapid advances in single-cell sequencing and TCR repertoire analysis to select the best clones without hybridoma selection, and generated CORSET8 mice (CORona Spike Epitope specific CD8 T cell), carrying a TCR specific for the Spike protein of SARS-CoV-2. Implementing newly created DALI software for TCR repertoire analysis in single-cell analysis enabled the rapid selection of the ideal responder CD8 T cell clone, based on antigen reactivity, proliferation, and immunophenotype in vivo. Identified TCR sequences were inserted as synthetic DNA into an expression vector and transgenic CORSET8 donor mice were created. After immunization with Spike/CpG-motifs, mRNA vaccination or SARS-CoV-2 infection, CORSET8 T cells strongly proliferated and showed signs of T cell activation. Thus, a combination of TCR repertoire analysis and scRNA immunophenotyping allowed rapid selection of antigen-specific TCR sequences that can be used to generate TCR transgenic mice.