Early analysis of the Australian COVID-19 epidemic

  1. David J Price  Is a corresponding author
  2. Freya M Shearer  Is a corresponding author
  3. Michael T Meehan
  4. Emma McBryde
  5. Robert Moss
  6. Nick Golding
  7. Eamon J Conway
  8. Peter Dawson
  9. Deborah Cromer
  10. James Wood
  11. Sam Abbott
  12. Jodie McVernon
  13. James M McCaw
  1. The University of Melbourne, Australia
  2. James Cook University, Australia
  3. Wellcome Trust Centre for Human Genetics, United Kingdom
  4. Department of Defence, Australia
  5. University of New South Wales, Australia
  6. London School of Hygiene and Tropical Medicine, United Kingdom

Abstract

As of 1 May 2020, there had been 6,808 confirmed cases of COVID-19 in Australia. Of these, 98 had died from the disease. The epidemic had been in decline since mid-March, with 308 cases confirmed nationally since 14 April. This suggests that the collective actions of the Australian public and government authorities in response to COVID-19 were sufficiently early and assiduous to avert a public health crisis — for now. Analysing factors that contribute to individual country experiences of COVID-19, such as the intensity and timing of public health interventions, will assist in the next stage of response planning globally. We describe how the epidemic and public health response unfolded in Australia up to 13 April. We estimate that the effective reproduction number was likely below 1 in each Australian state since mid-March and forecast that clinical demand would remain below capacity thresholds over the forecast period (from mid-to-late April).

Data availability

Analysis code is included in the supplementary materials. Datasets analysed and generated during this study are included in the supplementary materials. For estimates of the time-varying effective reproduction number (Figure 2), the complete line listed data within the Australian national COVID-19 database are not publicly available. However, we provide the cases per day by notification date and state (as shown in Figures 1 and S1) which, when supplemented with the estimated distribution of the delay from symptom onset to notification (samples from this distribution are provided as a data file), analyses of the time-varying effective reproduction number can be performed.

Article and author information

Author details

  1. David J Price

    Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
    For correspondence
    david.price1@unimelb.edu.au
    Competing interests
    David J Price, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  2. Freya M Shearer

    School of Population and Global Health, The University of Melbourne, Melbourne, Australia
    For correspondence
    freya.shearer@unimelb.edu.au
    Competing interests
    Freya M Shearer, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9600-3473
  3. Michael T Meehan

    Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
    Competing interests
    Michael T Meehan, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  4. Emma McBryde

    Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
    Competing interests
    Emma McBryde, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  5. Robert Moss

    School of Population and Global Health, The University of Melbourne, Melbourne, Australia
    Competing interests
    Robert Moss, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  6. Nick Golding

    Spatial Ecology and Epidemiology Group, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
    Competing interests
    Nick Golding, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  7. Eamon J Conway

    Victorian Infectious Diseases Reference Laboratory Epidemiology Unit at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
    Competing interests
    Eamon J Conway, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  8. Peter Dawson

    Defence Science and Technology, Department of Defence, Melbourne, Australia
    Competing interests
    Peter Dawson, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  9. Deborah Cromer

    Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, Australia
    Competing interests
    Deborah Cromer, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  10. James Wood

    School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
    Competing interests
    James Wood, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  11. Sam Abbott

    Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    Sam Abbott, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  12. Jodie McVernon

    Population health, The University of Melbourne, Parkville, Australia
    Competing interests
    Jodie McVernon, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  13. James M McCaw

    School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
    Competing interests
    James M McCaw, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2452-3098

Funding

Department of Health, Australian Government (NA)

  • James M McCaw

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ben S Cooper, Mahidol University, Thailand

Version history

  1. Received: May 11, 2020
  2. Accepted: August 12, 2020
  3. Accepted Manuscript published: August 13, 2020 (version 1)
  4. Version of Record published: August 26, 2020 (version 2)

Copyright

© 2020, Price et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,429
    views
  • 468
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David J Price
  2. Freya M Shearer
  3. Michael T Meehan
  4. Emma McBryde
  5. Robert Moss
  6. Nick Golding
  7. Eamon J Conway
  8. Peter Dawson
  9. Deborah Cromer
  10. James Wood
  11. Sam Abbott
  12. Jodie McVernon
  13. James M McCaw
(2020)
Early analysis of the Australian COVID-19 epidemic
eLife 9:e58785.
https://doi.org/10.7554/eLife.58785

Share this article

https://doi.org/10.7554/eLife.58785

Further reading

    1. Epidemiology and Global Health
    Zhanwei Du, Lin Wang ... Lauren A Meyers
    Short Report

    Paxlovid, a SARS-CoV-2 antiviral, not only prevents severe illness but also curtails viral shedding, lowering transmission risks from treated patients. By fitting a mathematical model of within-host Omicron viral dynamics to electronic health records data from 208 hospitalized patients in Hong Kong, we estimate that Paxlovid can inhibit over 90% of viral replication. However, its effectiveness critically depends on the timing of treatment. If treatment is initiated three days after symptoms first appear, we estimate a 17% chance of a post-treatment viral rebound and a 12% (95% CI: 0%-16%) reduction in overall infectiousness for non-rebound cases. Earlier treatment significantly elevates the risk of rebound without further reducing infectiousness, whereas starting beyond five days reduces its efficacy in curbing peak viral shedding. Among the 104 patients who received Paxlovid, 62% began treatment within an optimal three-to-five-day day window after symptoms appeared. Our findings indicate that broader global access to Paxlovid, coupled with appropriately timed treatment, can mitigate the severity and transmission of SARS-Cov-2.

    1. Epidemiology and Global Health
    Yuchen Zhang, Yitang Sun ... Kaixiong Ye
    Research Article

    Background:

    Circulating omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) have been associated with various chronic diseases and mortality, but results are conflicting. Few studies examined the role of omega-6/omega-3 ratio in mortality.

    Methods:

    We investigated plasma omega-3 and omega-6 PUFAs and their ratio in relation to all-cause and cause-specific mortality in a large prospective cohort, the UK Biobank. Of 85,425 participants who had complete information on circulating PUFAs, 6461 died during follow-up, including 2794 from cancer and 1668 from cardiovascular disease (CVD). Associations were estimated by multivariable Cox proportional hazards regression with adjustment for relevant risk factors.

    Results:

    Risk for all three mortality outcomes increased as the ratio of omega-6/omega-3 PUFAs increased (all Ptrend <0.05). Comparing the highest to the lowest quintiles, individuals had 26% (95% CI, 15–38%) higher total mortality, 14% (95% CI, 0–31%) higher cancer mortality, and 31% (95% CI, 10–55%) higher CVD mortality. Moreover, omega-3 and omega-6 PUFAs in plasma were all inversely associated with all-cause, cancer, and CVD mortality, with omega-3 showing stronger effects.

    Conclusions:

    Using a population-based cohort in UK Biobank, our study revealed a strong association between the ratio of circulating omega-6/omega-3 PUFAs and the risk of all-cause, cancer, and CVD mortality.

    Funding:

    Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institute of Health under the award number R35GM143060 (KY). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.