Meta-Research: COVID-19 medical papers have fewer women first authors than expected
Abstract
The COVID-19 pandemic has resulted in school closures and distancing requirements that have disrupted both work and family life for many. Concerns exist that these disruptions caused by the pandemic may not have influenced men and women researchers equally. Many medical journals have published papers on the pandemic, which were generated by researchers facing the challenges of these disruptions. Here we report the results of an analysis that compared the gender distribution of authors on 1,893 medical papers related to the pandemic with that on papers published in the same journals in 2019, for papers with first authors and last authors from the United States. Using mixed-effects regression models, we estimated that the proportion of COVID-19 papers with a woman first author was 19% lower than that for papers published in the same journals in 2019, while our comparisons for last authors and overall proportion of women authors per paper were inconclusive. A closer examination suggested that women’s representation as first authors of COVID-19 research was particularly low for papers published in March and April 2020. Our findings are consistent with the idea that the research productivity of women, especially early-career women, has been affected more than the research productivity of men.
Data availability
The final dataset for the main analysis is available on OSF: https://osf.io/cpv2m/
-
Inferred gender of COVID-19 researchers per articleOpen Science Framework, cpv2m.
Article and author information
Author details
Funding
The authors declare that there was no funding for this work.
Copyright
© 2020, Andersen et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 9,880
- views
-
- 813
- downloads
-
- 306
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
The study of science itself is a growing field of research.
-
- Medicine
Inherited retinal degenerations (IRDs) constitute a group of clinically and genetically diverse vision-impairing disorders. Retinitis pigmentosa (RP), the most common form of IRD, is characterized by gradual dysfunction and degeneration of rod photoreceptors, followed by the loss of cone photoreceptors. Recently, we identified reserpine as a lead molecule for maintaining rod survival in mouse and human retinal organoids as well as in the rd16 mouse, which phenocopy Leber congenital amaurosis caused by mutations in the cilia-centrosomal gene CEP290 (Chen et al., 2023). Here, we show the therapeutic potential of reserpine in a rhodopsin P23H rat model of autosomal dominant RP. At postnatal day (P) 68, when males and females are analyzed together, the reserpine-treated rats exhibit higher rod-derived scotopic b-wave amplitudes compared to the controls with little or no change in scotopic a-wave or cone-derived photopic b-wave. Interestingly, the reserpine-treated female rats display enhanced scotopic a- and b-waves and photopic b-wave responses at P68, along with a better contrast threshold and increased outer nuclear layer thickness. The female rats demonstrate better preservation of both rod and cone photoreceptors following reserpine treatment. Retinal transcriptome analysis reveals sex-specific responses to reserpine, with significant upregulation of phototransduction genes and proteostasis-related pathways, and notably, genes associated with stress response. This study builds upon our previously reported results reaffirming the potential of reserpine for gene-agnostic treatment of IRDs and emphasizes the importance of biological sex in retinal disease research and therapy development.