Abstract

Pathogens encounter numerous antimicrobial responses during infection, including the reactive oxygen species (ROS) burst. ROS-mediated oxidation of host membrane poly-unsaturated fatty acids (PUFAs) generates the toxic alpha-beta carbonyl 4-hydroxy-2-nonenal (4-HNE). Though studied extensively in the context of sterile inflammation, research into 4-HNE's role during infection remains limited. Here we found that 4-HNE is generated during bacterial infection, that it impacts growth and survival in a range of bacteria, and that the intracellular pathogen Listeria monocytogenes induces many genes in response to 4-HNE exposure. A component of the L. monocytogenes 4-HNE response is the expression of the genes lmo0103 and lmo0613, deemed rha1 and rha2 (reductase of host alkenals), respectively, which code for two NADPH-dependent oxidoreductases that convert 4-HNE to the product 4-hydroxynonanal (4-HNA). Loss of these genes had no impact on L. monocytogenes bacterial burdens during murine or tissue culture infection. However, heterologous expression of rha1/2 in Bacillus subtilis significantly increased bacterial resistance to 4-HNE in vitro and promoted bacterial survival following phagocytosis by murine macrophages in an ROS dependent manner. Thus, Rha1 and Rha2 are not necessary for 4-HNE resistance in L. monocytogenes but are sufficient to confer resistance to an otherwise sensitive organism in vitro and in host cells. Our work demonstrates that 4-HNE is a previously unappreciated component of ROS-mediated toxicity encountered by bacteria within eukaryotic hosts.

Data availability

All RNA sequencing data have been deposited to the GEO and are accessible using accession number GSE150188.

The following data sets were generated

Article and author information

Author details

  1. Hannah Tabakh

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5786-9394
  2. Adelle P McFarland

    Molecular and Cellular Biology Progam; Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7534-1158
  3. Maureen K Thomason

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alex J Pollock

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rochelle C Glover

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5699-0184
  6. Shivam A Zaver

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Joshua J Woodward

    Department of Microbiology, University of Washington, Seattle, United States
    For correspondence
    jjwoodwa@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4630-403X

Funding

National Institute of General Medical Sciences (PHS NRSA T32GM007270)

  • Hannah Tabakh
  • Alex J Pollock

National Science Foundation (DGE-1256082)

  • Adelle P McFarland

National Institute of Allergy and Infectious Diseases (R01AI116669)

  • Joshua J Woodward

National Institute of Allergy and Infectious Diseases (R21AI127833)

  • Joshua J Woodward

National Cancer Institute (1F30CA239659-01A1)

  • Shivam A Zaver

National Institute of Allergy and Infectious Diseases (5T32AI055396)

  • Rochelle C Glover

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kim Orth, HHMI/University of Texas Southwestern Medical Center, United States

Ethics

Animal experimentation: All experiments involving mice were performed in compliance with guidelines set by the American Association for Laboratory Animal Science (AALAS) and were approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Washington under protocol #4289-01.

Version history

  1. Received: May 25, 2020
  2. Accepted: May 5, 2021
  3. Accepted Manuscript published: May 6, 2021 (version 1)
  4. Version of Record published: May 27, 2021 (version 2)

Copyright

© 2021, Tabakh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,031
    views
  • 198
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hannah Tabakh
  2. Adelle P McFarland
  3. Maureen K Thomason
  4. Alex J Pollock
  5. Rochelle C Glover
  6. Shivam A Zaver
  7. Joshua J Woodward
(2021)
4-hydroxy-2-nonenal antimicrobial toxicity is neutralized by an intracellular pathogen
eLife 10:e59295.
https://doi.org/10.7554/eLife.59295

Share this article

https://doi.org/10.7554/eLife.59295

Further reading

    1. Microbiology and Infectious Disease
    Alejandro Prieto, Luïsa Miró ... Antonio Juarez
    Research Article

    Antimicrobial resistance (AMR) poses a significant threat to human health. Although vaccines have been developed to combat AMR, it has proven challenging to associate specific vaccine antigens with AMR. Bacterial plasmids play a crucial role in the transmission of AMR. Our recent research has identified a group of bacterial plasmids (specifically, IncHI plasmids) that encode large molecular mass proteins containing bacterial immunoglobulin-like domains. These proteins are found on the external surface of the bacterial cells, such as in the flagella or conjugative pili. In this study, we show that these proteins are antigenic and can protect mice from infection caused by an AMR Salmonella strain harboring one of these plasmids. Furthermore, we successfully generated nanobodies targeting these proteins, that were shown to interfere with the conjugative transfer of IncHI plasmids. Considering that these proteins are also encoded in other groups of plasmids, such as IncA/C and IncP2, targeting them could be a valuable strategy in combating AMR infections caused by bacteria harboring different groups of AMR plasmids. Since the selected antigens are directly linked to AMR itself, the protective effect extends beyond specific microorganisms to include all those carrying the corresponding resistance plasmids.

    1. Microbiology and Infectious Disease
    Hideo Fukuhara, Kohei Yumoto ... Katsumi Maenaka
    Research Article

    Canine distemper virus (CDV) belongs to morbillivirus, including measles virus (MeV) and rinderpest virus, which causes serious immunological and neurological disorders in carnivores, including dogs and rhesus monkeys, as recently reported, but their vaccines are highly effective. The attachment glycoprotein hemagglutinin (CDV-H) at the CDV surface utilizes signaling lymphocyte activation molecule (SLAM) and Nectin-4 (also called poliovirus-receptor-like-4; PVRL4) as entry receptors. Although fusion models have been proposed, the molecular mechanism of morbillivirus fusion entry is poorly understood. Here, we determined the crystal structure of the globular head domain of CDV-H vaccine strain at 3.2 Å resolution, revealing that CDV-H exhibits a highly tilted homodimeric form with a six-bladed β-propeller fold. While the predicted Nectin-4-binding site is well conserved with that of MeV-H, that of SLAM is similar but partially different, which is expected to contribute to host specificity. Five N-linked sugars covered a broad area of the CDV-H surface to expose receptor-binding sites only, supporting the effective production of neutralizing antibodies. These features are common to MeV-H, although the glycosylation sites are completely different. Furthermore, real-time observation using high-speed atomic force microscopy revealed highly mobile features of the CDV-H dimeric head via the connector region. These results suggest that sugar-shielded tilted homodimeric structure and dynamic conformational changes are common characteristics of morbilliviruses and ensure effective fusion entry and vaccination.