Optogenetics: Exciting inhibition in primates
At the age of 30, Louis Leborgne lost his ability to speak, and was only able to utter one syllable – ‘tan’. After his death 21 years later in 1861, a brain biopsy by his physician Paul Broca revealed that his inability to speak was caused by a lesion in the left frontal cortex, in a region of the brain now known as Broca’s area (Mohammed et al., 2018). More instructive though less known are Ernest Auburtin’s experiments on the exposed brain of a patient who had attempted suicide. When Auburtin softly pressed on specific parts of the frontal cortex, the patient lost his ability to speak, whereas his other cognitive functions remained unaffected (Stookey, 1963).
Whilst both studies showed the power of causally linking specific regions of the brain to specific behaviors, Auburtin’s experiments were more telling because of the reversible nature of his actions on an otherwise intact brain. However, these experiments – and many ‘causal’ techniques developed since then – lack spatio-temporal precision: that is, they cannot identify precisely where and when signals are produced or interrupted. Optogenetics overcomes these problems by using genetic manipulation or viral vectors to express light-sensitive proteins (such as opsins) in neurons: illumination with specific wavelengths of light can then induce neuronal responses that are precisely synchronized with the frequency of stimulation (Boyden et al., 2005). Moreover, specific cell types within a pool of diverse neurons can be precisely targeted, thereby achieving astonishing spatial resolution (Shemesh et al., 2017).
To reveal the causal relationship between a brain region and specific behavior, one can either increase local brain activity (Gerits et al., 2012), or decrease it (Afraz et al., 2015). Moreover, a region of the brain can be silenced by either inhibiting excitatory neurons or activating inhibitory neurons. A major drawback with the former approach, however, is that a period of silence induced by light is typically followed by a period of unwanted 'rebound' activity. Activating a local network of inhibitory neurons is more elegant because it takes advantage of natural inhibition in the brain and avoids the problem of rebound effects. This approach has proved successful in rodents, but efforts to translate it to primates have been limited. Recently, however, a new viral vector (Dlx5/6) that only targets inhibitory interneurons was demonstrated in multiple species, including primates (Dimidschstein et al., 2016).
Now, in eLife, Abhishek De (University of Washington), Yasmine El-Shamayleh (Columbia University) and Gregory Horwitz (University of Washington) report on the behavioral effectiveness of this approach in macaques (De et al., 2020). The researchers injected a Dlx5/6 vector carrying channelrhodopsin (an opsin that activates neurons) into the primary visual cortex of the primates and used immunohistochemical techniques to confirm that it primarily targeted inhibitory neurons that used the neurotransmitter GABA. When this region was illuminated via an optic fiber connected to an electrode, about two-thirds of the neurons increased their activity, whereas one third suppressed their activity. The latencies for the former group of neurons (that is, the interval between light stimulation and neuronal response) were short, which suggests that they were GABAergic interneurons that expressed channelrhodopsin. The latencies for the inactivated group of neurons were longer, indicating they were downstream from directly activated interneurons.
Therefore, using the new optogenetic technique to induce inhibition in the primary visual cortex (meaning this part of the cortex can no longer process visual information) should result in a temporary blind spot in the monkey’s visual field. To test this behaviorally, De, El-Shamayleh and Horwitz used a saccade test, during which they presented the monkey a point on a screen. When the position of the point overlapped with the receptive fields of the stimulated inhibitory neurons (blind spot), the monkeys were less likely to detect the stimulus (Figure 1). Also, performance on a contrast detection task was severely diminished when inhibitory neurons were activated. In this test, monkeys had to indicate (with eye movements) whether a contrast-adjusted faint stimulus was positioned either on the left or the right side of the screen. Optogenetic stimulation reduced their sensitivity to detect this cue on a grey background with the same mean luminance when the stimulus was placed inside the activated receptive fields. Thus, this experiment confirmed that optogenetics only affected the monkeys’ sensitivity to the visual stimulus, but not the ability to move their eyes.

Local visual sensitivity is reduced in macaques by activating inhibitory neurons.
A new optogenetics method can selectively stimulate inhibitory neurons and so reduce activity in a specific brain region. To test this method in macaques, De, El-Shamayleh and Horwitz injected the viral vector Dlx5/6 carrying channelrhodopsin – which activates inhibitory neurons (pink) – into the primary visual cortex of primates. Upon stimulation with light (torch), these inhibitory neurons were activated (top graph, blue line), subsequently leading to a deactivation of the excitatory neurons (grey: bottom graph, blue line). In a visual task, the monkeys were presented with a point that could appear randomly in different locations, and the subjects had to detect this point using an eye movement (green arrows). Activation of inhibitory neurons induced a blind spot in the visual field of the monkey; hence, monkeys were less likely to detect the point when it appeared in the blind spot (as indicated by the red cross). IPS: impulses per second (which corresponds to the firing rate of the neuron).
The work of De, El-Shamayleh and Horwitz constitutes another important milestone bridging the gap between research into the rodent brain and research into the monkey brain (Han et al., 2009; Gerits and Vanduffel, 2013), and it confirms that it is possible to successfully change behavior using selective activation of inhibitory neurons in primates (Dimidschstein et al., 2016). In the future, methods to reversibly control specific neurons in large brains with millisecond precision may become possible in monkeys (Marshel et al., 2019) and would allow to unravel the precise neuronal mechanisms underlying higher-order cognitive abilities unique to primates. Ultimately, it may be possible to recover lost brain functions in patients like Louis Leborgne, or patients with psychiatric disorders linked to a malfunctioning inhibitory circuitry of the brain.
References
-
Millisecond-timescale, genetically targeted optical control of neural activityNature Neuroscience 8:1263–1268.https://doi.org/10.1038/nn1525
-
A viral strategy for targeting and manipulating interneurons across vertebrate speciesNature Neuroscience 19:1743–1749.https://doi.org/10.1038/nn.4430
-
Optogenetics in primates: a shining future?Trends in Genetics 29:403–411.https://doi.org/10.1016/j.tig.2013.03.004
-
Louis Victor Leborgne ("Tan")World Neurosurgery 114:121–125.https://doi.org/10.1016/j.wneu.2018.02.021
-
Temporally precise single-cell-resolution optogeneticsNature Neuroscience 20:1796–1806.https://doi.org/10.1038/s41593-017-0018-8
Article and author information
Author details
Publication history
- Version of Record published: July 1, 2020 (version 1)
Copyright
© 2020, Vanduffel and Li
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,378
- Page views
-
- 98
- Downloads
-
- 1
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
- Neuroscience
The process of brain folding is thought to play an important role in the development and organisation of the cerebrum and the cerebellum. The study of cerebellar folding is challenging due to the small size and abundance of its folia. In consequence, little is known about its anatomical diversity and evolution. We constituted an open collection of histological data from 56 mammalian species and manually segmented the cerebrum and the cerebellum. We developed methods to measure the geometry of cerebellar folia and to estimate the thickness of the molecular layer. We used phylogenetic comparative methods to study the diversity and evolution of cerebellar folding and its relationship with the anatomy of the cerebrum. Our results show that the evolution of cerebellar and cerebral anatomy follows a stabilising selection process. We observed 2 groups of phenotypes changing concertedly through evolution: a group of 'diverse' phenotypes - varying over several orders of magnitude together with body size, and a group of 'stable' phenotypes varying over less than 1 order of magnitude across species. Our analyses confirmed the strong correlation between cerebral and cerebellar volumes across species, and showed in addition that large cerebella are disproportionately more folded than smaller ones. Compared with the extreme variations in cerebellar surface area, folial anatomy and molecular layer thickness varied only slightly, showing a much smaller increase in the larger cerebella. We discuss how these findings could provide new insights into the diversity and evolution of cerebellar folding, the mechanisms of cerebellar and cerebral folding, and their potential influence on the organisation of the brain across species.
-
- Neuroscience
Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.