Serotonin 2A receptor signaling coordinates central metabolic processes to modulate aging in response to nutrient choice

  1. Yang Lyu
  2. Kristina J Weaver
  3. Humza A Shaukat
  4. Marta L Plumoff
  5. Maria Tjilos
  6. Daniel EL Promislow
  7. Scott D Pletcher  Is a corresponding author
  1. University of Michigan, United States
  2. University of Washington, United States

Abstract

It has been recognized for nearly a century that diet modulates aging. Despite early experiments suggesting that reduced caloric intake augmented lifespan, accumulating evidence indicates that other characteristics of the diet may be equally or more influential in modulating aging. We demonstrate that behavior, metabolism, and lifespan in Drosophila are affected by whether flies are provided a choice of different nutrients or a single, complete medium, largely independent of the amount of nutrients that are consumed. Meal choice elicits a rapid metabolic reprogramming that indicates a potentiation of TCA cycle and amino acid metabolism, which requires serotonin 2A receptor. Knockdown of glutamate dehydrogenase, a key TCA pathway component, abrogates the effect of dietary choice on lifespan. Our results reveal a mechanism of aging that applies in natural conditions, including our own, in which organisms continuously perceive and evaluate nutrient availability to promote fitness and well-being.

Data availability

Source data for all quantifications shown in Data Figures 1-5, figures supplements and the supplementary files are provided with the paper. Metabolomic raw data, analyses and statistics can be obtained from Supplementary Files 3-4 and our GitHub repository (github.com/ylyu-fly/Metabolomics-FlyChoiceDiet).

The following data sets were generated

Article and author information

Author details

  1. Yang Lyu

    Molecuar and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4618-9043
  2. Kristina J Weaver

    Molecuar and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Humza A Shaukat

    College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Marta L Plumoff

    College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Maria Tjilos

    College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel EL Promislow

    Department of Lab Medicine & Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Scott D Pletcher

    Molecuar and Integrative Physiology, University of Michigan, Ann Arbor, United States
    For correspondence
    spletch@med.umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4812-3785

Funding

Burroughs Wellcome Fund (Collaborative Research Travel Grant,BWF1017452)

  • Yang Lyu

National Science Foundation (Graduate Research Fellowship Program,DGE 1256260)

  • Kristina J Weaver

National Institutes of Health (R01 AG049494 and P30 AG013280)

  • Daniel EL Promislow

National Institutes of Health (R01 AG051649 and R01 AG030593)

  • Scott D Pletcher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Lyu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,355
    views
  • 441
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yang Lyu
  2. Kristina J Weaver
  3. Humza A Shaukat
  4. Marta L Plumoff
  5. Maria Tjilos
  6. Daniel EL Promislow
  7. Scott D Pletcher
(2021)
Serotonin 2A receptor signaling coordinates central metabolic processes to modulate aging in response to nutrient choice
eLife 10:e59399.
https://doi.org/10.7554/eLife.59399

Share this article

https://doi.org/10.7554/eLife.59399

Further reading

    1. Chromosomes and Gene Expression
    2. Cell Biology
    Edited by Matt Kaeberlien et al.
    Collection

    eLife is pleased to present a Special Issue to highlight recent advances in the mechanistic understanding of aging and interventions that extend longevity.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Hasiba Asma, Ellen Tieke ... Marc S Halfon
    Tools and Resources

    Annotation of newly sequenced genomes frequently includes genes, but rarely covers important non-coding genomic features such as the cis-regulatory modules—e.g., enhancers and silencers—that regulate gene expression. Here, we begin to remedy this situation by developing a workflow for rapid initial annotation of insect regulatory sequences, and provide a searchable database resource with enhancer predictions for 33 genomes. Using our previously developed SCRMshaw computational enhancer prediction method, we predict over 2.8 million regulatory sequences along with the tissues where they are expected to be active, in a set of insect species ranging over 360 million years of evolution. Extensive analysis and validation of the data provides several lines of evidence suggesting that we achieve a high true-positive rate for enhancer prediction. One, we show that our predictions target specific loci, rather than random genomic locations. Two, we predict enhancers in orthologous loci across a diverged set of species to a significantly higher degree than random expectation would allow. Three, we demonstrate that our predictions are highly enriched for regions of accessible chromatin. Four, we achieve a validation rate in excess of 70% using in vivo reporter gene assays. As we continue to annotate both new tissues and new species, our regulatory annotation resource will provide a rich source of data for the research community and will have utility for both small-scale (single gene, single species) and large-scale (many genes, many species) studies of gene regulation. In particular, the ability to search for functionally related regulatory elements in orthologous loci should greatly facilitate studies of enhancer evolution even among distantly related species.