Vascular control of the CO2/H+ dependent drive to breathe

  1. Colin M Cleary
  2. Thiago S Moreira
  3. Ana C Takakura
  4. Mark T Nelson
  5. Thomas A Longden
  6. Daniel K Mulkey  Is a corresponding author
  1. University of Connecticut, United States
  2. University of São Paulo, Brazil
  3. University of Vermont, United States
  4. University of Maryland, United States

Abstract

Respiratory chemoreceptors regulate breathing in response to changes in tissue CO2/H+. Blood flow is a fundamental determinant of tissue CO2/H+, yet little is known regarding how regulation of vascular tone in chemoreceptor regions contributes to respiratory behavior. Previously, we showed in rat that CO2/H+-vasoconstriction in the retrotrapezoid nucleus (RTN) supports chemoreception by a purinergic-dependent mechanism (Hawkins et al. 2017). Here, we show in mice that CO2/H+ dilates arterioles in other chemoreceptor regions, thus demonstrating CO2/H+ vascular reactivity in the RTN is unique. We also identify P2Y2 receptors in RTN smooth muscle cells as the substrate responsible for this response. Specifically, pharmacological blockade or genetic deletion of P2Y2 from smooth muscle cells blunted the ventilatory response to CO2, and re-expression of P2Y2 receptors only in RTN smooth muscle cells fully rescued the CO2/H+ chemoreflex. These results identify P2Y2 receptors in RTN smooth muscle cells as requisite determinants of respiratory chemoreception.

Data availability

Source data files are included for all data sets that do not have individual points on summary figures

Article and author information

Author details

  1. Colin M Cleary

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0305-1324
  2. Thiago S Moreira

    Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9789-8296
  3. Ana C Takakura

    Department of Pharmacology, University of São Paulo, São Paulo, Brazil
    Competing interests
    No competing interests declared.
  4. Mark T Nelson

    Department of Pharmacology, University of Vermont, Burlington, United States
    Competing interests
    Mark T Nelson, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6608-8784
  5. Thomas A Longden

    Department of Physiology, University of Maryland, Baltimore, United States
    Competing interests
    No competing interests declared.
  6. Daniel K Mulkey

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    For correspondence
    daniel.mulkey@uconn.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7040-3927

Funding

National Institutes of Health (HL104101)

  • Daniel K Mulkey

Sao Paulo Research Foundation (2015/23376-1)

  • Thiago S Moreira

Conselho Nacional de Desenvolvimento Científico e Tecnológico (408647/2018-3)

  • Ana C Takakura

Conselho Nacional de Desenvolvimento Científico e Tecnológico (301219/2016-8)

  • Ana C Takakura

Conselho Nacional de Desenvolvimento Científico e Tecnológico (301904/2015-4)

  • Thiago S Moreira

Fondation Leducq

  • Mark T Nelson

European Union Horizon 2020 Research and Innovation Programme

  • Mark T Nelson

Henry M. Jackson Foundation (HU0001-18-2-001)

  • Mark T Nelson

National Institutes of Health (HL137094)

  • Daniel K Mulkey

National Institutes of Health (NS099887)

  • Daniel K Mulkey

National Institutes of Health (NS110656)

  • Mark T Nelson

National Institutes of Health (HL140027)

  • Mark T Nelson

National Institutes of Health (HL142227)

  • Colin M Cleary

American Heart Association (17SDG33670237)

  • Thomas A Longden

American Heart Association (19IPLOI34660108)

  • Thomas A Longden

Sao Paulo Research Foundation (2016/23281-3)

  • Ana C Takakura

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in accordance with National Institutes of Health and University of Connecticut Animal Care and Use Guidelines as described in protocols A19-048 and A20-016.

Copyright

© 2020, Cleary et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,304
    views
  • 239
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Colin M Cleary
  2. Thiago S Moreira
  3. Ana C Takakura
  4. Mark T Nelson
  5. Thomas A Longden
  6. Daniel K Mulkey
(2020)
Vascular control of the CO2/H+ dependent drive to breathe
eLife 9:e59499.
https://doi.org/10.7554/eLife.59499

Share this article

https://doi.org/10.7554/eLife.59499

Further reading

    1. Neuroscience
    Arndt-Lukas Klaassen, Björn Rasch
    Research Article

    Sleep associated memory consolidation and reactivation play an important role in language acquisition and learning of new words. However, it is unclear to what extent properties of word learning difficulty impact sleep associated memory reactivation. To address this gap, we investigated in 22 young healthy adults the effectiveness of auditory targeted memory reactivation (TMR) during non-rapid eye movement sleep of artificial words with easy and difficult to learn phonotactical properties. Here, we found that TMR of the easy words improved their overnight memory performance, whereas TMR of the difficult words had no effect. By comparing EEG activities after TMR presentations, we found an increase in slow wave density independent of word difficulty, whereas the spindle-band power nested during the slow wave up-states – as an assumed underlying activity of memory reactivation – was significantly higher in the easy/effective compared to the difficult/ineffective condition. Our findings indicate that word learning difficulty by phonotactics impacts the effectiveness of TMR and further emphasize the critical role of prior encoding depth in sleep associated memory reactivation.

    1. Neuroscience
    Allison T Goldstein, Terrence R Stanford, Emilio Salinas
    Research Article

    The neural mechanisms that willfully direct attention to specific locations in space are closely related to those for generating targeting eye movements (saccades). However, the degree to which the voluntary deployment of attention to a location necessarily activates a corresponding saccade plan remains unclear. One problem is that attention and saccades are both automatically driven by salient sensory events; another is that the underlying processes unfold within tens of milliseconds only. Here, we use an urgent task design to resolve the evolution of a visuomotor choice on a moment-by-moment basis while independently controlling the endogenous (goal-driven) and exogenous (salience-driven) contributions to performance. Human participants saw a peripheral cue and, depending on its color, either looked at it (prosaccade) or looked at a diametrically opposite, uninformative non-cue (antisaccade). By varying the luminance of the stimuli, the exogenous contributions could be cleanly dissociated from the endogenous process guiding the choice over time. According to the measured time courses, generating a correct antisaccade requires about 30 ms more processing time than generating a correct prosaccade based on the same perceptual signal. The results indicate that saccade plans elaborated during fixation are biased toward the location where attention is endogenously deployed, but the coupling is weak and can be willfully overridden very rapidly.