1. Neuroscience
Download icon

Vascular control of the CO2/H+ dependent drive to breathe

  1. Colin M Cleary
  2. Thiago S Moreira
  3. Ana C Takakura
  4. Mark T Nelson
  5. Thomas A Longden
  6. Daniel K Mulkey  Is a corresponding author
  1. University of Connecticut, United States
  2. University of São Paulo, Brazil
  3. University of Vermont, United States
  4. University of Maryland, United States
Research Advance
  • Cited 5
  • Views 892
  • Annotations
Cite this article as: eLife 2020;9:e59499 doi: 10.7554/eLife.59499

Abstract

Respiratory chemoreceptors regulate breathing in response to changes in tissue CO2/H+. Blood flow is a fundamental determinant of tissue CO2/H+, yet little is known regarding how regulation of vascular tone in chemoreceptor regions contributes to respiratory behavior. Previously, we showed in rat that CO2/H+-vasoconstriction in the retrotrapezoid nucleus (RTN) supports chemoreception by a purinergic-dependent mechanism (Hawkins et al. 2017). Here, we show in mice that CO2/H+ dilates arterioles in other chemoreceptor regions, thus demonstrating CO2/H+ vascular reactivity in the RTN is unique. We also identify P2Y2 receptors in RTN smooth muscle cells as the substrate responsible for this response. Specifically, pharmacological blockade or genetic deletion of P2Y2 from smooth muscle cells blunted the ventilatory response to CO2, and re-expression of P2Y2 receptors only in RTN smooth muscle cells fully rescued the CO2/H+ chemoreflex. These results identify P2Y2 receptors in RTN smooth muscle cells as requisite determinants of respiratory chemoreception.

Data availability

Source data files are included for all data sets that do not have individual points on summary figures

Article and author information

Author details

  1. Colin M Cleary

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0305-1324
  2. Thiago S Moreira

    Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9789-8296
  3. Ana C Takakura

    Department of Pharmacology, University of São Paulo, São Paulo, Brazil
    Competing interests
    No competing interests declared.
  4. Mark T Nelson

    Department of Pharmacology, University of Vermont, Burlington, United States
    Competing interests
    Mark T Nelson, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6608-8784
  5. Thomas A Longden

    Department of Physiology, University of Maryland, Baltimore, United States
    Competing interests
    No competing interests declared.
  6. Daniel K Mulkey

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    For correspondence
    daniel.mulkey@uconn.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7040-3927

Funding

National Institutes of Health (HL104101)

  • Daniel K Mulkey

Sao Paulo Research Foundation (2015/23376-1)

  • Thiago S Moreira

Conselho Nacional de Desenvolvimento Científico e Tecnológico (408647/2018-3)

  • Ana C Takakura

Conselho Nacional de Desenvolvimento Científico e Tecnológico (301219/2016-8)

  • Ana C Takakura

Conselho Nacional de Desenvolvimento Científico e Tecnológico (301904/2015-4)

  • Thiago S Moreira

Fondation Leducq

  • Mark T Nelson

European Union Horizon 2020 Research and Innovation Programme

  • Mark T Nelson

Henry M. Jackson Foundation (HU0001-18-2-001)

  • Mark T Nelson

National Institutes of Health (HL137094)

  • Daniel K Mulkey

National Institutes of Health (NS099887)

  • Daniel K Mulkey

National Institutes of Health (NS110656)

  • Mark T Nelson

National Institutes of Health (HL140027)

  • Mark T Nelson

National Institutes of Health (HL142227)

  • Colin M Cleary

American Heart Association (17SDG33670237)

  • Thomas A Longden

American Heart Association (19IPLOI34660108)

  • Thomas A Longden

Sao Paulo Research Foundation (2016/23281-3)

  • Ana C Takakura

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in accordance with National Institutes of Health and University of Connecticut Animal Care and Use Guidelines as described in protocols A19-048 and A20-016.

Reviewing Editor

  1. Jeffrey C Smith, National Institute of Neurological Disorders and Stroke, United States

Publication history

  1. Received: May 29, 2020
  2. Accepted: September 14, 2020
  3. Accepted Manuscript published: September 14, 2020 (version 1)
  4. Accepted Manuscript updated: September 16, 2020 (version 2)
  5. Version of Record published: September 28, 2020 (version 3)

Copyright

© 2020, Cleary et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 892
    Page views
  • 197
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Filip Sobczak et al.
    Research Article Updated

    Pupil dynamics serve as a physiological indicator of cognitive processes and arousal states of the brain across a diverse range of behavioral experiments. Pupil diameter changes reflect brain state fluctuations driven by neuromodulatory systems. Resting-state fMRI (rs-fMRI) has been used to identify global patterns of neuronal correlation with pupil diameter changes; however, the linkage between distinct brain state-dependent activation patterns of neuromodulatory nuclei with pupil dynamics remains to be explored. Here, we identified four clusters of trials with unique activity patterns related to pupil diameter changes in anesthetized rat brains. Going beyond the typical rs-fMRI correlation analysis with pupil dynamics, we decomposed spatiotemporal patterns of rs-fMRI with principal component analysis (PCA) and characterized the cluster-specific pupil–fMRI relationships by optimizing the PCA component weighting via decoding methods. This work shows that pupil dynamics are tightly coupled with different neuromodulatory centers in different trials, presenting a novel PCA-based decoding method to study the brain state-dependent pupil–fMRI relationship.

    1. Neuroscience
    Debora Fusca, Peter Kloppenburg
    Research Article

    Local interneurons (LNs) mediate complex interactions within the antennal lobe, the primary olfactory system of insects, and the functional analog of the vertebrate olfactory bulb. In the cockroach Periplaneta americana, as in other insects, several types of LNs with distinctive physiological and morphological properties can be defined. Here, we combined whole-cell patch-clamp recordings and Ca2+ imaging of individual LNs to analyze the role of spiking and nonspiking LNs in inter- and intraglomerular signaling during olfactory information processing. Spiking GABAergic LNs reacted to odorant stimulation with a uniform rise in [Ca2+]i in the ramifications of all innervated glomeruli. In contrast, in nonspiking LNs, glomerular Ca2+ signals were odorant specific and varied between glomeruli, resulting in distinct, glomerulus-specific tuning curves. The cell type-specific differences in Ca2+ dynamics support the idea that spiking LNs play a primary role in interglomerular signaling, while they assign nonspiking LNs an essential role in intraglomerular signaling.