Abstract

Understanding how the brain recovers from unconsciousness can inform neurobiological theories of consciousness and guide clinical investigation. To address this question, we conducted a multicenter study of 60 healthy humans, half of whom received general anesthesia for three hours and half of whom served as awake controls. We administered a battery of neurocognitive tests and recorded electroencephalography to assess cortical dynamics. We hypothesized that recovery of consciousness and cognition is an extended process, with differential recovery of cognitive functions that would commence with return of responsiveness and end with return of executive function, mediated by prefrontal cortex. We found that, just prior to the recovery of consciousness, frontal-parietal dynamics returned to baseline. Consistent with our hypothesis, cognitive reconstitution after anesthesia evolved over time. Contrary to our hypothesis, executive function returned first. Early engagement of prefrontal cortex in recovery of consciousness and cognition is consistent with global neuronal workspace theory.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data have been provided for Figures 2-5.

Article and author information

Author details

  1. George A Mashour

    Anesthesiology; Neuroscience, University of Michigan, Ann Arbor, United States
    For correspondence
    gmashour@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5457-5932
  2. Ben JA Palanca

    Anesthesiology, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mathias Basner

    Psychiatry, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Duan Li

    Anesthesiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wei Wang

    Statistics, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephanie Blain-Moraes

    Occupational Therapy; Biomedical Engineering, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Nan Lin

    Statistics, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kaitlyn Maier

    Anesthesiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Maxwell Muench

    Anesthesiology, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Vijay Tarnal

    Anesthesiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Giancarlo Vanini

    Anesthesiology; Neuroscience, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. E Andrew Ochroch

    Anesthesiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Rosemary Hogg

    Anesthesiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Marlon Schwartz

    Anesthesiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Hannah Maybrier

    Anesthesiology, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Randall Hardie

    Anesthesiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Ellen Janke

    Anesthesiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Goodarz Golmirzaie

    Anesthesiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Paul Picton

    Anesthesiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Andrew R McKinstry-Wu

    Anesthesiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7078-4603
  21. Michael S Avidan

    Anesthesiology, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Max B Kelz

    Bioengineering, Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2803-6078

Funding

James S. McDonnell Foundation (Understanding Human Cognition)

  • George A Mashour

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study received ethics committee approval from the University of Michigan, Washington University, and the University of Pennsylvania; written informed consent was obtained after careful discussion with each participant.

Copyright

© 2021, Mashour et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,934
    views
  • 1,285
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. George A Mashour
  2. Ben JA Palanca
  3. Mathias Basner
  4. Duan Li
  5. Wei Wang
  6. Stephanie Blain-Moraes
  7. Nan Lin
  8. Kaitlyn Maier
  9. Maxwell Muench
  10. Vijay Tarnal
  11. Giancarlo Vanini
  12. E Andrew Ochroch
  13. Rosemary Hogg
  14. Marlon Schwartz
  15. Hannah Maybrier
  16. Randall Hardie
  17. Ellen Janke
  18. Goodarz Golmirzaie
  19. Paul Picton
  20. Andrew R McKinstry-Wu
  21. Michael S Avidan
  22. Max B Kelz
(2021)
Recovery of consciousness and cognition after general anesthesia in humans
eLife 10:e59525.
https://doi.org/10.7554/eLife.59525

Share this article

https://doi.org/10.7554/eLife.59525

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Medicine
    Christin Krause, Jan H Britsemmer ... Henriette Kirchner
    Research Article

    Background:

    The development of obesity-associated comorbidities such as type 2 diabetes (T2D) and hepatic steatosis has been linked to selected microRNAs in individual studies; however, an unbiased genome-wide approach to map T2D induced changes in the miRNAs landscape in human liver samples, and a subsequent robust identification and validation of target genes are still missing.

    Methods:

    Liver biopsies from age- and gender-matched obese individuals with (n=20) or without (n=20) T2D were used for microRNA microarray analysis. The candidate microRNA and target genes were validated in 85 human liver samples, and subsequently mechanistically characterized in hepatic cells as well as by dietary interventions and hepatic overexpression in mice.

    Results:

    Here, we present the human hepatic microRNA transcriptome of type 2 diabetes in liver biopsies and use a novel seed prediction tool to robustly identify microRNA target genes, which were then validated in a unique cohort of 85 human livers. Subsequent mouse studies identified a distinct signature of T2D-associated miRNAs, partly conserved in both species. Of those, human-murine miR-182–5 p was the most associated with whole-body glucose homeostasis and hepatic lipid metabolism. Its target gene LRP6 was consistently lower expressed in livers of obese T2D humans and mice as well as under conditions of miR-182–5 p overexpression. Weight loss in obese mice decreased hepatic miR-182–5 p and restored Lrp6 expression and other miR-182–5 p target genes. Hepatic overexpression of miR-182–5 p in mice rapidly decreased LRP6 protein levels and increased liver triglycerides and fasting insulin under obesogenic conditions after only seven days.

    Conclusions:

    By mapping the hepatic miRNA-transcriptome of type 2 diabetic obese subjects, validating conserved miRNAs in diet-induced mice, and establishing a novel miRNA prediction tool, we provide a robust and unique resource that will pave the way for future studies in the field. As proof of concept, we revealed that the repression of LRP6 by miR-182–5 p, which promotes lipogenesis and impairs glucose homeostasis, provides a novel mechanistic link between T2D and non-alcoholic fatty liver disease, and demonstrate in vivo that miR-182–5 p can serve as a future drug target for the treatment of obesity-driven hepatic steatosis.

    Funding:

    This work was supported by research funding from the Deutsche Forschungsgemeinschaft (KI 1887/2-1, KI 1887/2-2, KI 1887/3-1 and CRC-TR296), the European Research Council (ERC, CoG Yoyo LepReSens no. 101002247; PTP), the Helmholtz Association (Initiative and Networking Fund International Helmholtz Research School for Diabetes; MB) and the German Center for Diabetes Research (DZD Next Grant 82DZD09D1G).