Abstract

Understanding how the brain recovers from unconsciousness can inform neurobiological theories of consciousness and guide clinical investigation. To address this question, we conducted a multicenter study of 60 healthy humans, half of whom received general anesthesia for three hours and half of whom served as awake controls. We administered a battery of neurocognitive tests and recorded electroencephalography to assess cortical dynamics. We hypothesized that recovery of consciousness and cognition is an extended process, with differential recovery of cognitive functions that would commence with return of responsiveness and end with return of executive function, mediated by prefrontal cortex. We found that, just prior to the recovery of consciousness, frontal-parietal dynamics returned to baseline. Consistent with our hypothesis, cognitive reconstitution after anesthesia evolved over time. Contrary to our hypothesis, executive function returned first. Early engagement of prefrontal cortex in recovery of consciousness and cognition is consistent with global neuronal workspace theory.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data have been provided for Figures 2-5.

Article and author information

Author details

  1. George A Mashour

    Anesthesiology; Neuroscience, University of Michigan, Ann Arbor, United States
    For correspondence
    gmashour@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5457-5932
  2. Ben JA Palanca

    Anesthesiology, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mathias Basner

    Psychiatry, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Duan Li

    Anesthesiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wei Wang

    Statistics, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephanie Blain-Moraes

    Occupational Therapy; Biomedical Engineering, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Nan Lin

    Statistics, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kaitlyn Maier

    Anesthesiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Maxwell Muench

    Anesthesiology, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Vijay Tarnal

    Anesthesiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Giancarlo Vanini

    Anesthesiology; Neuroscience, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. E Andrew Ochroch

    Anesthesiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Rosemary Hogg

    Anesthesiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Marlon Schwartz

    Anesthesiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Hannah Maybrier

    Anesthesiology, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Randall Hardie

    Anesthesiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Ellen Janke

    Anesthesiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Goodarz Golmirzaie

    Anesthesiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Paul Picton

    Anesthesiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Andrew R McKinstry-Wu

    Anesthesiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7078-4603
  21. Michael S Avidan

    Anesthesiology, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Max B Kelz

    Bioengineering, Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2803-6078

Funding

James S. McDonnell Foundation (Understanding Human Cognition)

  • George A Mashour

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study received ethics committee approval from the University of Michigan, Washington University, and the University of Pennsylvania; written informed consent was obtained after careful discussion with each participant.

Copyright

© 2021, Mashour et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,163
    views
  • 1,317
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. George A Mashour
  2. Ben JA Palanca
  3. Mathias Basner
  4. Duan Li
  5. Wei Wang
  6. Stephanie Blain-Moraes
  7. Nan Lin
  8. Kaitlyn Maier
  9. Maxwell Muench
  10. Vijay Tarnal
  11. Giancarlo Vanini
  12. E Andrew Ochroch
  13. Rosemary Hogg
  14. Marlon Schwartz
  15. Hannah Maybrier
  16. Randall Hardie
  17. Ellen Janke
  18. Goodarz Golmirzaie
  19. Paul Picton
  20. Andrew R McKinstry-Wu
  21. Michael S Avidan
  22. Max B Kelz
(2021)
Recovery of consciousness and cognition after general anesthesia in humans
eLife 10:e59525.
https://doi.org/10.7554/eLife.59525

Share this article

https://doi.org/10.7554/eLife.59525

Further reading

    1. Medicine
    Paul Horn, Jenny Norlin ... Philip N Newsome
    Research Article

    Gremlin-1 has been implicated in liver fibrosis in metabolic dysfunction-associated steatohepatitis (MASH) via inhibition of bone morphogenetic protein (BMP) signalling and has thereby been identified as a potential therapeutic target. Using rat in vivo and human in vitro and ex vivo model systems of MASH fibrosis, we show that neutralisation of Gremlin-1 activity with monoclonal therapeutic antibodies does not reduce liver inflammation or liver fibrosis. Still, Gremlin-1 was upregulated in human and rat MASH fibrosis, but expression was restricted to a small subpopulation of COL3A1/THY1+ myofibroblasts. Lentiviral overexpression of Gremlin-1 in LX-2 cells and primary hepatic stellate cells led to changes in BMP-related gene expression, which did not translate to increased fibrogenesis. Furthermore, we show that Gremlin-1 binds to heparin with high affinity, which prevents Gremlin-1 from entering systemic circulation, prohibiting Gremlin-1-mediated organ crosstalk. Overall, our findings suggest a redundant role for Gremlin-1 in the pathogenesis of liver fibrosis, which is unamenable to therapeutic targeting.

    1. Medicine
    2. Neuroscience
    Jörn Lötsch, Khayal Gasimli ... Marco Sisignano
    Research Article

    Background:

    Chemotherapy-induced peripheral neuropathy (CIPN) is a serious therapy-limiting side effect of commonly used anticancer drugs. Previous studies suggest that lipids may play a role in CIPN. Therefore, the present study aimed to identify the particular types of lipids that are regulated as a consequence of paclitaxel administration and may be associated with the occurrence of post-therapeutic neuropathy.

    Methods:

    High-resolution mass spectrometry lipidomics was applied to quantify d=255 different lipid mediators in the blood of n=31 patients drawn before and after paclitaxel therapy for breast cancer treatment. A variety of supervised statistical and machine-learning methods was applied to identify lipids that were regulated during paclitaxel therapy or differed among patients with and without post-therapeutic neuropathy.

    Results:

    Twenty-seven lipids were identified that carried relevant information to train machine learning algorithms to identify, in new cases, whether a blood sample was drawn before or after paclitaxel therapy with a median balanced accuracy of up to 90%. One of the top hits, sphinganine-1-phosphate (SA1P), was found to induce calcium transients in sensory neurons via the transient receptor potential vanilloid 1 (TRPV1) channel and sphingosine-1-phosphate receptors.SA1P also showed different blood concentrations between patients with and without neuropathy.

    Conclusions:

    Present findings suggest a role for sphinganine-1-phosphate in paclitaxel-induced biological changes associated with neuropathic side effects. The identified SA1P, through its receptors, may provide a potential drug target for co-therapy with paclitaxel to reduce one of its major and therapy-limiting side effects.

    Funding:

    This work was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG, Grants SFB1039 A09 and Z01) and by the Fraunhofer Foundation Project: Neuropathic Pain as well as the Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD). This work was also supported by the Leistungszentrum Innovative Therapeutics (TheraNova) funded by the Fraunhofer Society and the Hessian Ministry of Science and Arts. Jörn Lötsch was supported by the Deutsche Forschungsgemeinschaft (DFG LO 612/16-1).