1. Neuroscience
Download icon

Neural Circuits: Turning away from danger

  1. Jun Liu
  2. Monika Scholz  Is a corresponding author
  1. Max Planck Research Group Neural Information Flow, Center of Advanced European Studies and Research, Germany
Insight
Cite this article as: eLife 2020;9:e59910 doi: 10.7554/eLife.59910
1 figure

Figures

The escape response of C. elegans.

(A) Roundworms have been trying to escape from predators for millions of years. This schematic, based on analysis of a piece of amber that is about 100 million years old, shows a worm being trapped by a carnivorous fungus (Schmidt et al., 2007). (B) When a worm encounters an unpleasant stimulus (red flash, top), it escapes by backing away. Subsequently it starts to either move forward again (top right) or to turn and move in a new direction (bottom right). Interactions between the neural modules that control these three types of motion result in flexible outcomes. Mutual inhibition (red flat-ended arrows) between the reversal module and the forward module explains why the rate of reverse-forward transitions does not change with the length of the reversal. The relationship between the reversal module and the turning module is more complex as it involves both feedforward and feedback inhibitions, (blue flat-ended arrows) and feedforward excitation (brown zig-zag line). Moreover, the work of Wang et al. suggests that the feedforward inhibition from the reversal module to the turning module weakens with time (shown here with fading), thereby suggesting how longer reversals are more likely to be followed by turns.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)