Emotional learning retroactively promotes memory integration through rapid neural reactivation and reorganization

  1. Yannan Zhu  Is a corresponding author
  2. Yimeng Zeng
  3. Jingyuan Ren
  4. Lingke Zhang
  5. Changming Chen
  6. Guillén Fernández
  7. Shaozheng Qin  Is a corresponding author
  1. Radboud University Nijmegen Medical Centre, Netherlands
  2. Beijing Normal University, China
  3. Xinyang Normal University, China

Abstract

Neutral events preceding emotional experiences can be better remembered, likely by assigning them as significant to guide possible use in future. Yet, the neurobiological mechanisms of how emotional learning enhances memory for past mundane events remain unclear. By two behavioral studies and one functional magnetic resonance imaging study with an adapted sensory preconditioning paradigm, we show rapid neural reactivation and connectivity changes underlying emotion-charged retroactive memory enhancement. Behaviorally, emotional learning enhanced initial memory for neutral associations across the three studies. Neurally, emotional learning potentiated trial-specific reactivation of overlapping neural traces in the hippocampus and stimulus-relevant neocortex. It further induced rapid hippocampal-neocortical functional reorganization supporting such retroactive memory benefit, as characterized by enhanced hippocampal-neocortical coupling modulated by the amygdala during emotional learning, and a shift of hippocampal connectivity from stimulus-relevant neocortex to transmodal prefrontal-parietal areas at post-learning rests. Together, emotional learning retroactively promotes memory integration for past neutral events through stimulating trial-specific reactivation of overlapping representations and reorganization of associated memories into an integrated network to foster its priority for future use.

Data availability

All fMRI data collected in this study are available on OpenNeuro under the accession number ds004109 (https://openneuro.org/datasets/ds004109/versions/1.0.0).All code used for analysis are available on GitHub (https://github.com/QinBrainLab/2017_EmotionLearning.git).

Article and author information

Author details

  1. Yannan Zhu

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    For correspondence
    yan-nan.zhu@donders.ru.nl
    Competing interests
    The authors declare that no competing interests exist.
  2. Yimeng Zeng

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Jingyuan Ren

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Lingke Zhang

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Changming Chen

    Department of Psychology, Xinyang Normal University, Xinyang, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Guillén Fernández

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Shaozheng Qin

    State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
    For correspondence
    szqin@bnu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1859-2150

Funding

National Natural Science Foundation of China (32130045)

  • Shaozheng Qin

National Natural Science Foundation of China (31522028)

  • Shaozheng Qin

National Natural Science Foundation of China (81571056)

  • Shaozheng Qin

Open Research Fund of the State Key Laboratory of Cognitive Neuroscience and Learning (CNLZD1503)

  • Shaozheng Qin

Chinese Scholarship Council (201806040186)

  • Yannan Zhu

The funders have no role in study design, data collection, interpretation, and decision to submit the work for publication.

Reviewing Editor

  1. Thorsten Kahnt, National Institute on Drug Abuse Intramural Research Program, United States

Ethics

Human subjects: Informed written consent was obtained from each participant before the experiment. The Institutional Review Board for Human Subjects at Beijing Normal University (ICBIR_A_0098_002), Xinyang Normal University (same as above) and Peking University (IRB#2015-09-04) approved the procedures for Study 1, 2 and 3 respectively.

Version history

  1. Received: June 18, 2020
  2. Preprint posted: September 9, 2020 (view preprint)
  3. Accepted: December 6, 2022
  4. Accepted Manuscript published: December 8, 2022 (version 1)
  5. Accepted Manuscript updated: December 9, 2022 (version 2)
  6. Version of Record published: January 5, 2023 (version 3)

Copyright

© 2022, Zhu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,562
    Page views
  • 288
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yannan Zhu
  2. Yimeng Zeng
  3. Jingyuan Ren
  4. Lingke Zhang
  5. Changming Chen
  6. Guillén Fernández
  7. Shaozheng Qin
(2022)
Emotional learning retroactively promotes memory integration through rapid neural reactivation and reorganization
eLife 11:e60190.
https://doi.org/10.7554/eLife.60190

Share this article

https://doi.org/10.7554/eLife.60190

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.