Puromycin reactivity does not accurately localize translation at the subcellular level

  1. Syed Usman Enam
  2. Boris Zinshteyn
  3. Daniel H Goldman
  4. Madeline Cassani
  5. Nathan M Livingston
  6. Geraldine Seydoux
  7. Rachel Green  Is a corresponding author
  1. Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, United States
  2. Johns Hopkins University School of Medicine, United States

Abstract

Puromycin is a tyrosyl-tRNA mimic that blocks translation by labeling and releasing elongating polypeptide chains from translating ribosomes. Puromycin has been used in molecular biology research for decades as a translation inhibitor. The development of puromycin antibodies and derivatized puromycin analogs has enabled the quantification of active translation in bulk and single-cell assays. More recently, in vivo puromycylation assays have become popular tools for localizing translating ribosomes in cells. These assays often use elongation inhibitors to purportedly inhibit the release of puromycin-labeled nascent peptides from ribosomes. Using in vitro and in vivo experiments in various eukaryotic systems, we demonstrate that, even in the presence of elongation inhibitors, puromycylated peptides are released and diffuse away from ribosomes. Puromycylation assays reveal subcellular sites, such as nuclei, where puromycylated peptides accumulate post-release and which do not necessarily coincide with sites of active translation. Our findings urge caution when interpreting puromycylation assays in vivo.

Data availability

Raw data for all plots have been deposited in accompanying excel files.

Article and author information

Author details

  1. Syed Usman Enam

    Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8976-0660
  2. Boris Zinshteyn

    Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Daniel H Goldman

    Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Madeline Cassani

    Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  5. Nathan M Livingston

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4670-708X
  6. Geraldine Seydoux

    Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8257-0493
  7. Rachel Green

    Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    ragreen@jhmi.edu
    Competing interests
    Rachel Green, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9337-2003

Funding

National Institutes of Health (2R37GM059425-14)

  • Rachel Green

National Institutes of Health (5R37HD037047-20)

  • Geraldine Seydoux

National Institutes of Health (5K99GM135450-02)

  • Boris Zinshteyn

Howard Hughes Medical Institute

  • Rachel Green

Howard Hughes Medical Institute

  • Geraldine Seydoux

Damon Runyon Cancer Research Foundation (DRG-2280-16)

  • Daniel H Goldman

Damon Runyon Cancer Research Foundation (DRG-2250-16)

  • Boris Zinshteyn

National Institutes of Health (T32 GM007445)

  • Madeline Cassani
  • Nathan M Livingston

National Science Foundation (DGE-1746891)

  • Madeline Cassani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Robert H Singer, Albert Einstein College of Medicine, United States

Version history

  1. Received: June 22, 2020
  2. Accepted: August 22, 2020
  3. Accepted Manuscript published: August 26, 2020 (version 1)
  4. Version of Record published: September 14, 2020 (version 2)
  5. Version of Record updated: November 25, 2020 (version 3)

Copyright

© 2020, Enam et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 16,856
    views
  • 1,241
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Syed Usman Enam
  2. Boris Zinshteyn
  3. Daniel H Goldman
  4. Madeline Cassani
  5. Nathan M Livingston
  6. Geraldine Seydoux
  7. Rachel Green
(2020)
Puromycin reactivity does not accurately localize translation at the subcellular level
eLife 9:e60303.
https://doi.org/10.7554/eLife.60303

Share this article

https://doi.org/10.7554/eLife.60303

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article Updated

    Mediator of ERBB2-driven cell motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high-MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.