Peroxiredoxin promotes longevity and H2O2-resistance in yeast through redox-modulation of protein kinase A

  1. Friederike Roger
  2. Cecilia Picazo
  3. Wolfgang Reiter
  4. Marouane Libiad
  5. Chikako Asami
  6. Sarah Hanzén
  7. Chunxia Gao
  8. Gilles Lagniel
  9. Niek Welkenhuysen
  10. Jean Labarre
  11. Thomas Nyström
  12. Morten Grotli
  13. Markus Hartl
  14. Michel B Toledano
  15. Mikael Molin  Is a corresponding author
  1. University of Gothenburg, Sweden
  2. Chalmers University of Technology, Sweden
  3. University of Vienna, Austria
  4. CEA Saclay, France
  5. IBITECS, SBIGEM, CEA-Saclay, France

Abstract

Peroxiredoxins are H2O2 scavenging enzymes that also carry H2O2 signaling and chaperone functions. In yeast, the major cytosolic peroxiredoxin, Tsa1 is required for both promoting resistance to H2O2 and extending lifespan upon caloric restriction. We show here that Tsa1 effects both these functions not by scavenging H2O2, but by repressing the nutrient signaling Ras-cAMP-PKA pathway at the level of the protein kinase A (PKA) enzyme. Tsa1 stimulates sulfenylation of cysteines in the PKA catalytic subunit by H2O2 and a significant proportion of the catalytic subunits are glutathionylated on two cysteine residues. Redox modification of the conserved Cys243 inhibits the phosphorylation of a conserved Thr241 in the kinase activation loop and enzyme activity, and preventing Thr241 phosphorylation can overcome the H2O2 sensitivity of Tsa1-deficient cells. Results support a model of aging where nutrient signaling pathways constitute hubs integrating information from multiple aging-related conduits, including a peroxiredoxin-dependent response to H2O2.

Data availability

Proteomics data have been deposited in the PRIDE repository.

The following data sets were generated

Article and author information

Author details

  1. Friederike Roger

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Cecilia Picazo

    Dept of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Wolfgang Reiter

    Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Marouane Libiad

    Oxidative stress and cancer laboratory, Integrative Biology and Molecular Genetics Unit (SBiGEM), CEA Saclay, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Chikako Asami

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Sarah Hanzén

    Department of Chemistry and Molecular BIology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Chunxia Gao

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Gilles Lagniel

    Oxidative Stress and Cancer Laboratory, Integrative Biology and Molecular Genetics Unit, CEA Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Niek Welkenhuysen

    Dept of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  10. Jean Labarre

    Oxidative Stress and Cancer Laboratory, Integrative Biology and Molecular Genetics Unit, CEA Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Thomas Nyström

    Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5489-2903
  12. Morten Grotli

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3621-4222
  13. Markus Hartl

    Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4970-7336
  14. Michel B Toledano

    Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3079-1179
  15. Mikael Molin

    Dept of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
    For correspondence
    mikael.molin@chalmers.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3903-8503

Funding

Cancerfonden

  • Mikael Molin

Vetenskapsrådet

  • Mikael Molin

Stiftelsen Olle Engkvist Byggmästare

  • Mikael Molin

Carl Tryggers Stiftelse för Vetenskaplig Forskning

  • Mikael Molin

Agence Nationale de la Recherche (PrxAge)

  • Michel B Toledano

Agence Nationale de la Recherche (ERRed2)

  • Michel B Toledano

Swedish Research Council (NT 2019-03937)

  • Thomas Nyström

Knut och Alice Wallenbergs Stiftelse (2017-0091 and 2015-0272)

  • Thomas Nyström

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maya Schuldiner, Weizmann Institute, Israel

Publication history

  1. Received: June 24, 2020
  2. Accepted: July 8, 2020
  3. Accepted Manuscript published: July 14, 2020 (version 1)
  4. Accepted Manuscript updated: July 15, 2020 (version 2)
  5. Version of Record published: July 30, 2020 (version 3)

Copyright

© 2020, Roger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,414
    Page views
  • 549
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Friederike Roger
  2. Cecilia Picazo
  3. Wolfgang Reiter
  4. Marouane Libiad
  5. Chikako Asami
  6. Sarah Hanzén
  7. Chunxia Gao
  8. Gilles Lagniel
  9. Niek Welkenhuysen
  10. Jean Labarre
  11. Thomas Nyström
  12. Morten Grotli
  13. Markus Hartl
  14. Michel B Toledano
  15. Mikael Molin
(2020)
Peroxiredoxin promotes longevity and H2O2-resistance in yeast through redox-modulation of protein kinase A
eLife 9:e60346.
https://doi.org/10.7554/eLife.60346
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Brandon Wey-Hung Liauw et al.
    Research Article

    Activation of G protein-coupled receptors (GPCRs) is an allosteric process. It involves conformational coupling between the orthosteric ligand binding site and the G protein binding site. Factors that bind at non-cognate ligand binding sites to alter the allosteric activation process are classified as allosteric modulators and represent a promising class of therapeutics with distinct modes of binding and action. For many receptors, how modulation of signaling is represented at the structural level is unclear. Here, we developed FRET sensors to quantify receptor modulation at each of the three structural domains of metabotropic glutamate receptor 2 (mGluR2). We identified the conformational fingerprint for several allosteric modulators in live cells. This approach enabled us to derive a receptor-centric representation of allosteric modulation and to correlate structural modulation to the standard signaling modulation metrics. Single-molecule FRET analysis revealed that a NAM increases the occupancy of one of the intermediate states while a PAM increases the occupancy of the active state. Moreover, we found that the effect of allosteric modulators on the receptor dynamics is complex and depend on the orthosteric ligand. Collectively, our findings provide a structural mechanism of allosteric modulation in mGluR2 and suggest possible strategies for design of future modulators.

    1. Biochemistry and Chemical Biology
    Eugene Serebryany et al.
    Research Article Updated

    Cataract is one of the most prevalent protein aggregation disorders and still the most common cause of vision loss worldwide. The metabolically quiescent core region of the human lens lacks cellular or protein turnover; it has therefore evolved remarkable mechanisms to resist light-scattering protein aggregation for a lifetime. We now report that one such mechanism involves an unusually abundant lens metabolite, myo-inositol, suppressing aggregation of lens crystallins. We quantified aggregation suppression using our previously well-characterized in vitro aggregation assays of oxidation-mimicking human γD-crystallin variants and investigated myo-inositol’s molecular mechanism of action using solution NMR, negative-stain TEM, differential scanning fluorometry, thermal scanning Raman spectroscopy, turbidimetry in redox buffers, and free thiol quantitation. Unlike many known chemical chaperones, myo-inositol’s primary target was not the native, unfolded, or final aggregated states of the protein; rather, we propose that it was the rate-limiting bimolecular step on the aggregation pathway. Given recent metabolomic evidence that it is severely depleted in human cataractous lenses compared to age-matched controls, we suggest that maintaining or restoring healthy levels of myo-inositol in the lens may be a simple, safe, and globally accessible strategy to prevent or delay lens opacification due to age-onset cataract.