Peroxiredoxin promotes longevity and H2O2-resistance in yeast through redox-modulation of protein kinase A

  1. Friederike Roger
  2. Cecilia Picazo
  3. Wolfgang Reiter
  4. Marouane Libiad
  5. Chikako Asami
  6. Sarah Hanzén
  7. Chunxia Gao
  8. Gilles Lagniel
  9. Niek Welkenhuysen
  10. Jean Labarre
  11. Thomas Nyström
  12. Morten Grotli
  13. Markus Hartl
  14. Michel B Toledano
  15. Mikael Molin  Is a corresponding author
  1. University of Gothenburg, Sweden
  2. Chalmers University of Technology, Sweden
  3. University of Vienna, Austria
  4. CEA Saclay, France
  5. IBITECS, SBIGEM, CEA-Saclay, France

Abstract

Peroxiredoxins are H2O2 scavenging enzymes that also carry H2O2 signaling and chaperone functions. In yeast, the major cytosolic peroxiredoxin, Tsa1 is required for both promoting resistance to H2O2 and extending lifespan upon caloric restriction. We show here that Tsa1 effects both these functions not by scavenging H2O2, but by repressing the nutrient signaling Ras-cAMP-PKA pathway at the level of the protein kinase A (PKA) enzyme. Tsa1 stimulates sulfenylation of cysteines in the PKA catalytic subunit by H2O2 and a significant proportion of the catalytic subunits are glutathionylated on two cysteine residues. Redox modification of the conserved Cys243 inhibits the phosphorylation of a conserved Thr241 in the kinase activation loop and enzyme activity, and preventing Thr241 phosphorylation can overcome the H2O2 sensitivity of Tsa1-deficient cells. Results support a model of aging where nutrient signaling pathways constitute hubs integrating information from multiple aging-related conduits, including a peroxiredoxin-dependent response to H2O2.

Data availability

Proteomics data have been deposited in the PRIDE repository.

The following data sets were generated

Article and author information

Author details

  1. Friederike Roger

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Cecilia Picazo

    Dept of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Wolfgang Reiter

    Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Marouane Libiad

    Oxidative stress and cancer laboratory, Integrative Biology and Molecular Genetics Unit (SBiGEM), CEA Saclay, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Chikako Asami

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Sarah Hanzén

    Department of Chemistry and Molecular BIology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Chunxia Gao

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Gilles Lagniel

    Oxidative Stress and Cancer Laboratory, Integrative Biology and Molecular Genetics Unit, CEA Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Niek Welkenhuysen

    Dept of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  10. Jean Labarre

    Oxidative Stress and Cancer Laboratory, Integrative Biology and Molecular Genetics Unit, CEA Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Thomas Nyström

    Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5489-2903
  12. Morten Grotli

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3621-4222
  13. Markus Hartl

    Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4970-7336
  14. Michel B Toledano

    Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3079-1179
  15. Mikael Molin

    Dept of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
    For correspondence
    mikael.molin@chalmers.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3903-8503

Funding

Cancerfonden

  • Mikael Molin

Vetenskapsrådet

  • Mikael Molin

Stiftelsen Olle Engkvist Byggmästare

  • Mikael Molin

Carl Tryggers Stiftelse för Vetenskaplig Forskning

  • Mikael Molin

Agence Nationale de la Recherche (PrxAge)

  • Michel B Toledano

Agence Nationale de la Recherche (ERRed2)

  • Michel B Toledano

Swedish Research Council (NT 2019-03937)

  • Thomas Nyström

Knut och Alice Wallenbergs Stiftelse (2017-0091 and 2015-0272)

  • Thomas Nyström

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maya Schuldiner, Weizmann Institute, Israel

Version history

  1. Received: June 24, 2020
  2. Accepted: July 8, 2020
  3. Accepted Manuscript published: July 14, 2020 (version 1)
  4. Accepted Manuscript updated: July 15, 2020 (version 2)
  5. Version of Record published: July 30, 2020 (version 3)

Copyright

© 2020, Roger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,220
    views
  • 682
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Friederike Roger
  2. Cecilia Picazo
  3. Wolfgang Reiter
  4. Marouane Libiad
  5. Chikako Asami
  6. Sarah Hanzén
  7. Chunxia Gao
  8. Gilles Lagniel
  9. Niek Welkenhuysen
  10. Jean Labarre
  11. Thomas Nyström
  12. Morten Grotli
  13. Markus Hartl
  14. Michel B Toledano
  15. Mikael Molin
(2020)
Peroxiredoxin promotes longevity and H2O2-resistance in yeast through redox-modulation of protein kinase A
eLife 9:e60346.
https://doi.org/10.7554/eLife.60346

Share this article

https://doi.org/10.7554/eLife.60346

Further reading

    1. Biochemistry and Chemical Biology
    Zheng Ruan, Junuk Lee ... Wei Lü
    Research Article

    Protein phosphorylation is one of the major molecular mechanisms regulating protein activity and function throughout the cell. Pannexin 1 (PANX1) is a large-pore channel permeable to ATP and other cellular metabolites. Its tyrosine phosphorylation and subsequent activation have been found to play critical roles in diverse cellular conditions, including neuronal cell death, acute inflammation, and smooth muscle contraction. Specifically, the non-receptor kinase Src has been reported to phosphorylate Tyr198 and Tyr308 of mouse PANX1 (equivalent to Tyr199 and Tyr309 of human PANX1), resulting in channel opening and ATP release. Although the Src-dependent PANX1 activation mechanism has been widely discussed in the literature, independent validation of the tyrosine phosphorylation of PANX1 has been lacking. Here, we show that commercially available antibodies against the two phosphorylation sites mentioned above—which were used to identify endogenous PANX1 phosphorylation at these two sites—are nonspecific and should not be used to interpret results related to PANX1 phosphorylation. We further provide evidence that neither tyrosine residue is a major phosphorylation site for Src kinase in heterologous expression systems. We call on the field to re-examine the existing paradigm of tyrosine phosphorylation-dependent activation of the PANX1 channel.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.