Peroxiredoxin promotes longevity and H2O2-resistance in yeast through redox-modulation of protein kinase A

  1. Friederike Roger
  2. Cecilia Picazo
  3. Wolfgang Reiter
  4. Marouane Libiad
  5. Chikako Asami
  6. Sarah Hanzén
  7. Chunxia Gao
  8. Gilles Lagniel
  9. Niek Welkenhuysen
  10. Jean Labarre
  11. Thomas Nyström
  12. Morten Grotli
  13. Markus Hartl
  14. Michel B Toledano
  15. Mikael Molin  Is a corresponding author
  1. University of Gothenburg, Sweden
  2. Chalmers University of Technology, Sweden
  3. University of Vienna, Austria
  4. CEA Saclay, France
  5. IBITECS, SBIGEM, CEA-Saclay, France

Abstract

Peroxiredoxins are H2O2 scavenging enzymes that also carry H2O2 signaling and chaperone functions. In yeast, the major cytosolic peroxiredoxin, Tsa1 is required for both promoting resistance to H2O2 and extending lifespan upon caloric restriction. We show here that Tsa1 effects both these functions not by scavenging H2O2, but by repressing the nutrient signaling Ras-cAMP-PKA pathway at the level of the protein kinase A (PKA) enzyme. Tsa1 stimulates sulfenylation of cysteines in the PKA catalytic subunit by H2O2 and a significant proportion of the catalytic subunits are glutathionylated on two cysteine residues. Redox modification of the conserved Cys243 inhibits the phosphorylation of a conserved Thr241 in the kinase activation loop and enzyme activity, and preventing Thr241 phosphorylation can overcome the H2O2 sensitivity of Tsa1-deficient cells. Results support a model of aging where nutrient signaling pathways constitute hubs integrating information from multiple aging-related conduits, including a peroxiredoxin-dependent response to H2O2.

Data availability

Proteomics data have been deposited in the PRIDE repository.

The following data sets were generated

Article and author information

Author details

  1. Friederike Roger

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Cecilia Picazo

    Dept of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Wolfgang Reiter

    Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Marouane Libiad

    Oxidative stress and cancer laboratory, Integrative Biology and Molecular Genetics Unit (SBiGEM), CEA Saclay, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Chikako Asami

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Sarah Hanzén

    Department of Chemistry and Molecular BIology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Chunxia Gao

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Gilles Lagniel

    Oxidative Stress and Cancer Laboratory, Integrative Biology and Molecular Genetics Unit, CEA Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Niek Welkenhuysen

    Dept of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  10. Jean Labarre

    Oxidative Stress and Cancer Laboratory, Integrative Biology and Molecular Genetics Unit, CEA Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Thomas Nyström

    Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5489-2903
  12. Morten Grotli

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3621-4222
  13. Markus Hartl

    Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4970-7336
  14. Michel B Toledano

    Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3079-1179
  15. Mikael Molin

    Dept of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
    For correspondence
    mikael.molin@chalmers.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3903-8503

Funding

Cancerfonden

  • Mikael Molin

Vetenskapsrådet

  • Mikael Molin

Stiftelsen Olle Engkvist Byggmästare

  • Mikael Molin

Carl Tryggers Stiftelse för Vetenskaplig Forskning

  • Mikael Molin

Agence Nationale de la Recherche (PrxAge)

  • Michel B Toledano

Agence Nationale de la Recherche (ERRed2)

  • Michel B Toledano

Swedish Research Council (NT 2019-03937)

  • Thomas Nyström

Knut och Alice Wallenbergs Stiftelse (2017-0091 and 2015-0272)

  • Thomas Nyström

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maya Schuldiner, Weizmann Institute, Israel

Version history

  1. Received: June 24, 2020
  2. Accepted: July 8, 2020
  3. Accepted Manuscript published: July 14, 2020 (version 1)
  4. Accepted Manuscript updated: July 15, 2020 (version 2)
  5. Version of Record published: July 30, 2020 (version 3)

Copyright

© 2020, Roger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,286
    views
  • 694
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Friederike Roger
  2. Cecilia Picazo
  3. Wolfgang Reiter
  4. Marouane Libiad
  5. Chikako Asami
  6. Sarah Hanzén
  7. Chunxia Gao
  8. Gilles Lagniel
  9. Niek Welkenhuysen
  10. Jean Labarre
  11. Thomas Nyström
  12. Morten Grotli
  13. Markus Hartl
  14. Michel B Toledano
  15. Mikael Molin
(2020)
Peroxiredoxin promotes longevity and H2O2-resistance in yeast through redox-modulation of protein kinase A
eLife 9:e60346.
https://doi.org/10.7554/eLife.60346

Share this article

https://doi.org/10.7554/eLife.60346

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.