Differential impact of BTK active site inhibitors on the conformational state of full-length BTK

  1. Raji E Joseph
  2. Neha Amatya
  3. D Bruce Fulton
  4. John R Engen
  5. Thomas E Wales  Is a corresponding author
  6. Amy Andreotti  Is a corresponding author
  1. Iowa State University, United States
  2. Northeastern University, United States

Abstract

Bruton's tyrosine kinase (BTK) is targeted in the treatment of B-cell disorders including leukemias and lymphomas. Currently approved BTK inhibitors, including Ibrutinib, a first-in-class covalent inhibitor of BTK, bind directly to the kinase active site. While effective at blocking the catalytic activity of BTK, consequences of drug binding on the global conformation of full-length BTK are unknown. Here we uncover a range of conformational effects in full-length BTK induced by a panel of active site inhibitors, including large-scale shifts in the conformational equilibria of the regulatory domains. Additionally, we find that a remote Ibrutinib resistance mutation, T316A in the BTK SH2 domain, drives spurious BTK activity by destabilizing the compact autoinhibitory conformation of full-length BTK, shifting the conformational ensemble away from the autoinhibited form. Future development of BTK inhibitors will need to consider long-range allosteric consequences of inhibitor binding, including the emerging application of these BTK inhibitors in treating COVID-19.

Data availability

Hydrogen/deuterium exchange data have been deposited in the PRIDE database.

The following data sets were generated

Article and author information

Author details

  1. Raji E Joseph

    Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Neha Amatya

    Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. D Bruce Fulton

    Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. John R Engen

    Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6918-9476
  5. Thomas E Wales

    Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
    For correspondence
    T.Wales@northeastern.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Amy Andreotti

    Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
    For correspondence
    amyand@iastate.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6952-7244

Funding

National Institute of Allergy and Infectious Diseases (AI43957)

  • Amy Andreotti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John Kuriyan, University of California, Berkeley, United States

Version history

  1. Received: June 27, 2020
  2. Accepted: November 20, 2020
  3. Accepted Manuscript published: November 23, 2020 (version 1)
  4. Version of Record published: January 25, 2021 (version 2)

Copyright

© 2020, Joseph et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,831
    Page views
  • 549
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Raji E Joseph
  2. Neha Amatya
  3. D Bruce Fulton
  4. John R Engen
  5. Thomas E Wales
  6. Amy Andreotti
(2020)
Differential impact of BTK active site inhibitors on the conformational state of full-length BTK
eLife 9:e60470.
https://doi.org/10.7554/eLife.60470

Further reading

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Jiyu Xin, Yang Shi ... Xiaoling Xu
    Research Article

    Carotenoid (Car) pigments perform central roles in photosynthesis-related light harvesting (LH), photoprotection, and assembly of functional pigment-protein complexes. However, the relationships between Car depletion in the LH, assembly of the prokaryotic reaction center (RC)-LH complex, and quinone exchange are not fully understood. Here, we analyzed native RC-LH (nRC-LH) and Car-depleted RC-LH (dRC-LH) complexes in Roseiflexus castenholzii, a chlorosome-less filamentous anoxygenic phototroph that forms the deepest branch of photosynthetic bacteria. Newly identified exterior Cars functioned with the bacteriochlorophyll B800 to block the proposed quinone channel between LHαβ subunits in the nRC-LH, forming a sealed LH ring that was disrupted by transmembrane helices from cytochrome c and subunit X to allow quinone shuttling. dRC-LH lacked subunit X, leading to an exposed LH ring with a larger opening, which together accelerated the quinone exchange rate. We also assigned amino acid sequences of subunit X and two hypothetical proteins Y and Z that functioned in forming the quinone channel and stabilizing the RC-LH interactions. This study reveals the structural basis by which Cars assembly regulates the architecture and quinone exchange of bacterial RC-LH complexes. These findings mark an important step forward in understanding the evolution and diversity of prokaryotic photosynthetic apparatus.

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Dasvit Shetty, Linda J Kenney
    Research Article

    The transcriptional regulator SsrB acts as a switch between virulent and biofilm lifestyles of non-typhoidal Salmonella enterica serovar Typhimurium. During infection, phosphorylated SsrB activates genes on Salmonella Pathogenicity Island-2 (SPI-2) essential for survival and replication within the macrophage. Low pH inside the vacuole is a key inducer of expression and SsrB activation. Previous studies demonstrated an increase in SsrB protein levels and DNA-binding affinity at low pH; the molecular basis was unknown (Liew et al., 2019). This study elucidates its underlying mechanism and in vivo significance. Employing single-molecule and transcriptional assays, we report that the SsrB DNA binding domain alone (SsrBc) is insufficient to induce acid pH-sensitivity. Instead, His12, a conserved residue in the receiver domain, confers pH sensitivity to SsrB allosterically. Acid-dependent DNA binding was highly cooperative, suggesting a new configuration of SsrB oligomers at SPI-2-dependent promoters. His12 also plays a role in SsrB phosphorylation; substituting His12 reduced phosphorylation at neutral pH and abolished pH-dependent differences. Failure to flip the switch in SsrB renders Salmonella avirulent and represents a potential means of controlling virulence.