Differential impact of BTK active site inhibitors on the conformational state of full-length BTK

  1. Raji E Joseph
  2. Neha Amatya
  3. D Bruce Fulton
  4. John R Engen
  5. Thomas E Wales  Is a corresponding author
  6. Amy Andreotti  Is a corresponding author
  1. Iowa State University, United States
  2. Northeastern University, United States

Abstract

Bruton's tyrosine kinase (BTK) is targeted in the treatment of B-cell disorders including leukemias and lymphomas. Currently approved BTK inhibitors, including Ibrutinib, a first-in-class covalent inhibitor of BTK, bind directly to the kinase active site. While effective at blocking the catalytic activity of BTK, consequences of drug binding on the global conformation of full-length BTK are unknown. Here we uncover a range of conformational effects in full-length BTK induced by a panel of active site inhibitors, including large-scale shifts in the conformational equilibria of the regulatory domains. Additionally, we find that a remote Ibrutinib resistance mutation, T316A in the BTK SH2 domain, drives spurious BTK activity by destabilizing the compact autoinhibitory conformation of full-length BTK, shifting the conformational ensemble away from the autoinhibited form. Future development of BTK inhibitors will need to consider long-range allosteric consequences of inhibitor binding, including the emerging application of these BTK inhibitors in treating COVID-19.

Data availability

Hydrogen/deuterium exchange data have been deposited in the PRIDE database.

The following data sets were generated

Article and author information

Author details

  1. Raji E Joseph

    Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Neha Amatya

    Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. D Bruce Fulton

    Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. John R Engen

    Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6918-9476
  5. Thomas E Wales

    Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
    For correspondence
    T.Wales@northeastern.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Amy Andreotti

    Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
    For correspondence
    amyand@iastate.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6952-7244

Funding

National Institute of Allergy and Infectious Diseases (AI43957)

  • Amy Andreotti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Joseph et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,812
    views
  • 681
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Raji E Joseph
  2. Neha Amatya
  3. D Bruce Fulton
  4. John R Engen
  5. Thomas E Wales
  6. Amy Andreotti
(2020)
Differential impact of BTK active site inhibitors on the conformational state of full-length BTK
eLife 9:e60470.
https://doi.org/10.7554/eLife.60470

Share this article

https://doi.org/10.7554/eLife.60470

Further reading

    1. Structural Biology and Molecular Biophysics
    Ganesh Srinivasan Anand
    Insight

    A combination of X-ray crystallography, NMR, and mass spectrometry has revealed how diverse small-molecule inhibitors bind Bruton’s tyrosine kinase and alter the conformation of this enzyme.

    1. Structural Biology and Molecular Biophysics
    Laura-Marie Silbermann, Benjamin Vermeer ... Katarzyna Tych
    Review Article

    Molecular chaperones are vital proteins that maintain protein homeostasis by assisting in protein folding, activation, degradation, and stress protection. Among them, heat-shock protein 90 (Hsp90) stands out as an essential proteostasis hub in eukaryotes, chaperoning hundreds of ‘clients’ (substrates). After decades of research, several ‘known unknowns’ about the molecular function of Hsp90 remain unanswered, hampering rational drug design for the treatment of cancers, neurodegenerative, and other diseases. We highlight three fundamental open questions, reviewing the current state of the field for each, and discuss new opportunities, including single-molecule technologies, to answer the known unknowns of the Hsp90 chaperone.