Diverse viral proteases activate the NLRP1 inflammasome
Abstract
The NLRP1 inflammasome is a multiprotein complex that is a potent activator of inflammation. Mouse NLRP1B can be activated through proteolytic cleavage by the bacterial Lethal Toxin (LeTx) protease, resulting in degradation of the N-terminal domains of NLRP1B and liberation of the bioactive C-terminal domain, which includes the caspase activation and recruitment domain (CARD). However, natural pathogen-derived effectors that can activate human NLRP1 have remained unknown. Here, we use an evolutionary model to identify several proteases from diverse picornaviruses that cleave human NLRP1 within a rapidly evolving region of the protein, leading to host-specific and virus-specific activation of the NLRP1 inflammasome. Our work demonstrates that NLRP1 acts as a “tripwire” to recognize the enzymatic function of a wide range of viral proteases, and suggests that host mimicry of viral polyprotein cleavage sites can be an evolutionary strategy to activate a robust inflammatory immune response.
Data availability
All data generated or analyzed during this study are included in the manuscript and supporting files. Sources of sequence information used for figures and figure supplements have been provided.The ViPR database was used to collect enteroviral polyprotein sequences using the Picornaviridae-specific Gene/Protein search tool (https://www.viprbrc.org/brc/vipr_protein_search.spg?method=ShowCleanSearch&decorator=picorna), selecting protein sequences from all enteroviruses with filters for complete genome to include "completely genome only" and a search type to "include Polyproteins in Results" with the Gene Product Name of "polyprotein". Using the advanced options, options for a minimum CDS length of "6000" with "remove duplicate sequences" were selected. The collection of sequences used in this analysis are listed in Supplementary files 1 and 2.The NCBI protein database (https://www.ncbi.nlm.nih.gov/protein) was used to collect sequences for human (NP_127497.1), mouse NLRP1B allele 129 (AAZ40510.1), mouse NLRP1B allele B6 (XM_017314698.2), other mammalian NLRP1 sequences (Supplementary file 7), picornaviral 3C protease sequences (Supplementary file 7), and NCBI RefSeq enterovirus polyprotein sequences. The NCBI RefSeq enterovirus polyprotein sequences were collected from the NCBI protein database using the search phrase "Enterovirus[Organism] AND srcdb_refseq[PROP] NOT cellular organisms[ORGN]" and filtering by sequence length "2000 to 4000" and release date "to 2018/04/31".Human non-synonymous allele counts for NLRP1 (Figure 4C) were collected using gnomAD (https://gnomad.broadinstitute.org/) v2.1.1 with the search term "NLRP1".
Article and author information
Author details
Funding
National Institutes of Health (R35 GM133633)
- Matthew D Daugherty
Pew Charitable Trusts
- Matthew D Daugherty
Hellman Foundation
- Matthew D Daugherty
National Institutes of Health (T32 GM007240)
- Brian V Tsu
- Christopher Beierschmitt
- Andrew P Ryan
National Science Foundation (2019284620)
- Christopher Beierschmitt
Jane Coffin Childs Memorial Fund for Medical Research
- Patrick S Mitchell
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Tsu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,215
- views
-
- 911
- downloads
-
- 115
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Immunology and Inflammation
The immunosuppressive microenvironment in pancreatic ductal adenocarcinoma (PDAC) prevents tumor control and strategies to restore anti-cancer immunity (i.e. by increasing CD8 T-cell activity) have had limited success. Here, we demonstrate how inducing localized physical damage using ionizing radiation (IR) unmasks the benefit of immunotherapy by increasing tissue-resident natural killer (trNK) cells that support CD8 T activity. Our data confirms that targeting mouse orthotopic PDAC tumors with IR together with CCR5 inhibition and PD1 blockade reduces E-cadherin positive tumor cells by recruiting a hypoactive NKG2D-ve NK population, phenotypically reminiscent of trNK cells, that supports CD8 T-cell involvement. We show an equivalent population in human single-cell RNA sequencing (scRNA-seq) PDAC cohorts that represents immunomodulatory trNK cells that could similarly support CD8 T-cell levels in a cDC1-dependent manner. Importantly, a trNK signature associates with survival in PDAC and other solid malignancies revealing a potential beneficial role for trNK in improving adaptive anti-tumor responses and supporting CCR5 inhibitor (CCR5i)/αPD1 and IR-induced damage as a novel therapeutic approach.
-
- Immunology and Inflammation
Here, we sequenced rearranged TCRβ and TCRα chain sequences in CD4+CD8+ double positive (DP), CD4+CD8- single positive (SP4) and CD4-CD8+ (SP8) thymocyte populations from the foetus and young adult mouse. We found that life-stage had a greater impact on TCRβ and TCRα gene segment usage than cell-type. Foetal repertoires showed bias towards 3’TRAV and 5’TRAJ rearrangements in all populations, whereas adult repertoires used more 5’TRAV gene segments, suggesting that progressive TCRα rearrangements occur less frequently in foetal DP cells. When we synchronised young adult DP thymocyte differentiation by hydrocortisone treatment the new recovering DP thymocyte population showed more foetal-like 3’TRAV and 5’TRAJ gene segment usage. In foetus we identified less influence of MHC-restriction on α-chain and β-chain combinatorial VxJ usage and CDR1xCDR2 (V region) usage in SP compared to adult, indicating weaker impact of MHC-restriction on the foetal TCR repertoire. The foetal TCRβ repertoire was less diverse, less evenly distributed, with fewer non-template insertions, and all foetal populations contained more clonotypic expansions than adult. The differences between the foetal and adult thymus TCR repertoires are consistent with the foetal thymus producing αβT-cells with properties and functions that are distinct from adult T-cells: their repertoire is less governed by MHC-restriction, with preference for particular gene segment usage, less diverse with more clonotypic expansions, and more closely encoded by genomic sequence.