Diverse viral proteases activate the NLRP1 inflammasome
Abstract
The NLRP1 inflammasome is a multiprotein complex that is a potent activator of inflammation. Mouse NLRP1B can be activated through proteolytic cleavage by the bacterial Lethal Toxin (LeTx) protease, resulting in degradation of the N-terminal domains of NLRP1B and liberation of the bioactive C-terminal domain, which includes the caspase activation and recruitment domain (CARD). However, natural pathogen-derived effectors that can activate human NLRP1 have remained unknown. Here, we use an evolutionary model to identify several proteases from diverse picornaviruses that cleave human NLRP1 within a rapidly evolving region of the protein, leading to host-specific and virus-specific activation of the NLRP1 inflammasome. Our work demonstrates that NLRP1 acts as a “tripwire” to recognize the enzymatic function of a wide range of viral proteases, and suggests that host mimicry of viral polyprotein cleavage sites can be an evolutionary strategy to activate a robust inflammatory immune response.
Data availability
All data generated or analyzed during this study are included in the manuscript and supporting files. Sources of sequence information used for figures and figure supplements have been provided.The ViPR database was used to collect enteroviral polyprotein sequences using the Picornaviridae-specific Gene/Protein search tool (https://www.viprbrc.org/brc/vipr_protein_search.spg?method=ShowCleanSearch&decorator=picorna), selecting protein sequences from all enteroviruses with filters for complete genome to include "completely genome only" and a search type to "include Polyproteins in Results" with the Gene Product Name of "polyprotein". Using the advanced options, options for a minimum CDS length of "6000" with "remove duplicate sequences" were selected. The collection of sequences used in this analysis are listed in Supplementary files 1 and 2.The NCBI protein database (https://www.ncbi.nlm.nih.gov/protein) was used to collect sequences for human (NP_127497.1), mouse NLRP1B allele 129 (AAZ40510.1), mouse NLRP1B allele B6 (XM_017314698.2), other mammalian NLRP1 sequences (Supplementary file 7), picornaviral 3C protease sequences (Supplementary file 7), and NCBI RefSeq enterovirus polyprotein sequences. The NCBI RefSeq enterovirus polyprotein sequences were collected from the NCBI protein database using the search phrase "Enterovirus[Organism] AND srcdb_refseq[PROP] NOT cellular organisms[ORGN]" and filtering by sequence length "2000 to 4000" and release date "to 2018/04/31".Human non-synonymous allele counts for NLRP1 (Figure 4C) were collected using gnomAD (https://gnomad.broadinstitute.org/) v2.1.1 with the search term "NLRP1".
Article and author information
Author details
Funding
National Institutes of Health (R35 GM133633)
- Matthew D Daugherty
Pew Charitable Trusts
- Matthew D Daugherty
Hellman Foundation
- Matthew D Daugherty
National Institutes of Health (T32 GM007240)
- Brian V Tsu
- Christopher Beierschmitt
- Andrew P Ryan
National Science Foundation (2019284620)
- Christopher Beierschmitt
Jane Coffin Childs Memorial Fund for Medical Research
- Patrick S Mitchell
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Tsu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,246
- views
-
- 912
- downloads
-
- 115
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Immunology and Inflammation
Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements. One such novel interaction was identified at CNS9, an upstream conserved noncoding region in the human IL10 gene, which harbors a non-canonical IKZF1 binding site. We confirmed the cooperative binding of JUN and IKZF1 and showed that the activity of an IL10-luciferase reporter construct in primary B and T cells depended on both this site and the AP1 binding site within this composite element. Overall, our findings reveal an unappreciated global association of IKZF1 and AP1 and establish SPICE as a valuable new pipeline for predicting novel transcription binding complexes.
-
- Immunology and Inflammation
- Medicine
Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3ar1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.