Dynamic Na+/H+ Exchanger 1 (NHE1):Calmodulin complexes of varying stoichiometry and structure regulate Ca2+-dependent NHE1 activation

Abstract

Calmodulin (CaM) engages in Ca2+-dependent interactions with numerous proteins, including a still incompletely understood physical and functional interaction with the human Na+/H+-exchanger NHE1. Using nuclear magnetic resonance (NMR) spectroscopy, isothermal titration calorimetry, and fibroblasts stably expressing wildtype and mutant NHE1, we discovered multiple accessible states of this functionally important complex existing in different NHE1:CaM stoichiometries and structures. We determined the NMR solution structure of a ternary complex in which CaM links two NHE1 cytosolic tails. In vitro, stoichiometries and affinities could be tuned by variations in NHE1:CaM ratio and calcium ([Ca2+]) and by phosphorylation of S648 in the first CaM-binding a-helix. In cells, Ca2+-CaM-induced NHE1 activity was reduced by mimicking S648 phosphorylation and by mutation of the first CaM-binding a-helix, whereas it was unaffected by inhibition of Akt, one of several kinases phosphorylating S648. Our results demonstrate a diversity of NHE1:CaM interaction modes and suggest that CaM may contribute to NHE1 dimerization and thereby augment NHE1 regulation. We propose that a similar structural diversity is of relevance to many other CaM complexes.

Data availability

Source data files are provided for Figure 1, 3, 5 and 6. Resonance assignments of the ternary complex of CaM and two H1 have been deposited in the Biological Magnetic Resonance Bank (BMRB) under ID code 34521. The atomic coordinates for the ternary complex of CaM and two H1 have been deposited in the Protein Data Bank under the ID code 6zbi.

The following data sets were generated

Article and author information

Author details

  1. Lise M Sjøgaard-Frich

    Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  2. Andreas Prestel

    Structural Biology and NMR laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Emilie S Pedersen

    Structural Biology and NMR laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Marc Severin

    Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Kristian Kølby Kristensen

    Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Johan G Olsen

    Structural Biology and NMR laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Birthe B Kragelund

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    bbk@bio.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7454-1761
  8. Stine Falsig Pedersen

    Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    sfpedersen@bio.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3044-7714

Funding

Danish Research Councils (4181-00344)

  • Birthe B Kragelund

Novo Nordisk Fonden (NNF15OC0016670)

  • Birthe B Kragelund

Novo Nordisk Fonden (NNF18OC0034070)

  • Stine Falsig Pedersen

Novo Nordisk Fonden (NNF19OC0057241)

  • Stine Falsig Pedersen

Novo Nordisk Fonden (NNF18OC0032996)

  • Birthe B Kragelund

Villum Fonden

  • Birthe B Kragelund

Carlsbergfondet (CF20-0491)

  • Stine Falsig Pedersen

Novo Nordisk

  • Lise M Sjøgaard-Frich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Sjøgaard-Frich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.60889

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.