SUMOylation contributes to proteostasis of the chloroplast protein import receptor TOC159 during early development

  1. Sonia Accossato
  2. Felix Kessler  Is a corresponding author
  3. Venkatasalam Shanmugabalaji  Is a corresponding author
  1. Université de Neuchâtel, Switzerland

Abstract

Chloroplast biogenesis describes the transition of non-photosynthetic proplastids to photosynthetically active chloroplasts in the cells of germinating seeds. Chloroplast biogenesis requires the import of thousands of nuclear-encoded preproteins by essential import receptor TOC159. We demonstrate that the SUMO (Small Ubiquitin-related Modifier) pathway crosstalks with the ubiquitin-proteasome pathway to affect TOC159 stability during early plant development. We identified a SUMO3-interacting motif (SIM) in the TOC159 GTPase domain and a SUMO3 covalent SUMOylation site in the membrane domain. A single K to R substitution (K1370R) in the M-domain disables SUMOylation. Compared to wild type TOC159, TOC159K1370R was destabilized under UPS-inducing stress conditions. However, TOC159K1370R recovered to same protein level as wild type TOC159 in the presence of a proteasome inhibitor. Thus, SUMOylation partially stabilizes TOC159 against UPS-dependent degradation under stress conditions. Our data contribute to the evolving model of tightly controlled proteostasis of the TOC159 import receptor during proplastid to chloroplast transition.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2 and 3.

Article and author information

Author details

  1. Sonia Accossato

    Laboratoire de Physiologie Végétale, Université de Neuchâtel, Neuchâtel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Felix Kessler

    Laboratoire de Physiologie Végétale, Université de Neuchâtel, Neuchâtel, Switzerland
    For correspondence
    felix.kessler@unine.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6409-5043
  3. Venkatasalam Shanmugabalaji

    Laboratoire de Physiologie Végétale, Université de Neuchâtel, Neuchâtel, Switzerland
    For correspondence
    shanmugabalaji.venkatasalam@unine.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3855-6958

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_156998)

  • Felix Kessler

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A _176191)

  • Felix Kessler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Heather E McFarlane, University of Toronto, Canada

Publication history

  1. Received: July 11, 2020
  2. Accepted: December 22, 2020
  3. Accepted Manuscript published: December 22, 2020 (version 1)
  4. Version of Record published: October 7, 2021 (version 2)

Copyright

© 2020, Accossato et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,205
    Page views
  • 273
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sonia Accossato
  2. Felix Kessler
  3. Venkatasalam Shanmugabalaji
(2020)
SUMOylation contributes to proteostasis of the chloroplast protein import receptor TOC159 during early development
eLife 9:e60968.
https://doi.org/10.7554/eLife.60968

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Emily RR Mackie et al.
    Research Advance

    Herbicides with novel modes of action are urgently needed to safeguard global agricultural industries against the damaging effects of herbicide-resistant weeds. We recently developed the first herbicidal inhibitors of lysine biosynthesis, which provided proof-of-concept for a promising novel herbicide target. In this study, we expanded upon our understanding of the mode of action of herbicidal lysine biosynthesis inhibitors. We previously postulated that these inhibitors may act as proherbicides. Here, we show this is not the case. We report an additional mode of action of these inhibitors, through their inhibition of a second lysine biosynthesis enzyme, and investigate the molecular determinants of inhibition. Furthermore, we extend our herbicidal activity analyses to include a weed species of global significance.

    1. Plant Biology
    Jack Rhodes et al.
    Short Report Updated

    Plant genomes encode hundreds of secreted peptides; however, relatively few have been characterised. We report here an uncharacterised, stress-induced family of plant signalling peptides, which we call CTNIPs. Based on the role of the common co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) in CTNIP-induced responses, we identified in Arabidopsis thaliana the orphan receptor kinase HAESA-LIKE 3 (HSL3) as the CTNIP receptor via a proteomics approach. CTNIP-binding, ligand-triggered complex formation with BAK1, and induced downstream responses all involve HSL3. Notably, the HSL3-CTNIP signalling module is evolutionarily conserved amongst most extant angiosperms. The identification of this novel signalling module will further shed light on the diverse functions played by plant signalling peptides and will provide insights into receptor-ligand co-evolution.