1. Cell Biology
  2. Plant Biology
Download icon

Crosstalk between the chloroplast protein import and SUMO systems revealed through genetic and molecular investigation in Arabidopsis

  1. Samuel Watson
  2. Na Li
  3. Yiting Ye
  4. Feijie Wu
  5. Qihua Ling
  6. R Paul Jarvis  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. Institute of Plant Physiology and Ecology, China
  3. University of Leicester, United Kingdom
Research Article
  • Cited 0
  • Views 463
  • Annotations
Cite this article as: eLife 2021;10:e60960 doi: 10.7554/eLife.60960

Abstract

The chloroplast proteome contains thousands of different proteins that are encoded by the nuclear genome. These proteins are imported into the chloroplast via the action of the TOC translocase and associated downstream systems. Our recent work has revealed that the stability of the TOC complex is dynamically regulated by the ubiquitin-dependent chloroplast-associated protein degradation (CHLORAD) pathway. Here, we demonstrate that the TOC complex is also regulated by the SUMO system. Arabidopsis mutants representing almost the entire SUMO conjugation pathway can partially suppress the phenotype of ppi1, a pale-yellow mutant lacking the Toc33 protein. This suppression is linked to increased abundance of TOC proteins and improvements in chloroplast development. Moreover, data from molecular and biochemical experiments support a model in which the SUMO system directly regulates TOC protein stability. Thus, we have identified a regulatory link between the SUMO system and the chloroplast protein import machinery.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Samuel Watson

    Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Na Li

    Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Yiting Ye

    Institute of Plant Physiology and Ecology, Shanghai, China
    Competing interests
    No competing interests declared.
  4. Feijie Wu

    University of Leicester, Leicester, United Kingdom
    Competing interests
    No competing interests declared.
  5. Qihua Ling

    Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. R Paul Jarvis

    Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
    For correspondence
    paul.jarvis@plants.ox.ac.uk
    Competing interests
    R Paul Jarvis, The application of CHLORAD as a technology for crop improvement is covered by a patent application (no. WO2019/171091 A)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2127-5671

Funding

Biotechnology and Biological Sciences Research Council (BB/K018442/1,BB/N006372/1,BB/R016984/1,BB/R009333/1)

  • R Paul Jarvis

Biotechnology and Biological Sciences Research Council (Interdisciplinary Bioscience Doctoral Training Partnership)

  • Samuel Watson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Heather E McFarlane, University of Toronto, Canada

Publication history

  1. Received: July 11, 2020
  2. Accepted: September 1, 2021
  3. Accepted Manuscript published: September 2, 2021 (version 1)

Copyright

© 2021, Watson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 463
    Page views
  • 134
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Jacopo Di Russo et al.
    Research Article

    Nanometer-scale properties of the extracellular matrix influence many biological processes, including cell motility. While much information is available for single-cell migration, to date, no knowledge exists on how the nanoscale presentation of extracellular matrix receptors influences collective cell migration. In wound healing, basal keratinocytes collectively migrate on a fibronectin-rich provisional basement membrane to re-epithelialize the injured skin. Among other receptors, the fibronectin receptor integrin α5β1 plays a pivotal role in this process. Using a highly specific integrin α5β1 peptidomimetic combined with nanopatterned hydrogels, we show that keratinocyte sheets regulate their migration ability at an optimal integrin α5β1 nanospacing. This efficiency relies on the effective propagation of stresses within the cell monolayer independent of substrate stiffness. For the first time, this work highlights the importance of extracellular matrix receptor nanoscale organization required for efficient tissue regeneration.

    1. Cell Biology
    Lisa M Strong et al.
    Research Article Updated

    Autophagy is a cellular process that degrades cytoplasmic cargo by engulfing it in a double-membrane vesicle, known as the autophagosome, and delivering it to the lysosome. The ATG12–5–16L1 complex is responsible for conjugating members of the ubiquitin-like ATG8 protein family to phosphatidylethanolamine in the growing autophagosomal membrane, known as the phagophore. ATG12–5–16L1 is recruited to the phagophore by a subset of the phosphatidylinositol 3-phosphate-binding seven-bladedß -propeller WIPI proteins. We determined the crystal structure of WIPI2d in complex with the WIPI2 interacting region (W2IR) of ATG16L1 comprising residues 207–230 at 1.85 Å resolution. The structure shows that the ATG16L1 W2IR adopts an alpha helical conformation and binds in an electropositive and hydrophobic groove between WIPI2 ß-propeller blades 2 and 3. Mutation of residues at the interface reduces or blocks the recruitment of ATG12–5–16 L1 and the conjugation of the ATG8 protein LC3B to synthetic membranes. Interface mutants show a decrease in starvation-induced autophagy. Comparisons across the four human WIPIs suggest that WIPI1 and 2 belong to a W2IR-binding subclass responsible for localizing ATG12–5–16 L1 and driving ATG8 lipidation, whilst WIPI3 and 4 belong to a second W34IR-binding subclass responsible for localizing ATG2, and so directing lipid supply to the nascent phagophore. The structure provides a framework for understanding the regulatory node connecting two central events in autophagy initiation, the action of the autophagic PI 3-kinase complex on the one hand and ATG8 lipidation on the other.