Plasma proteomic biomarker signature of age predicts health and life span

  1. Toshiko Tanaka  Is a corresponding author
  2. Nathan Basisty
  3. Giovanna Fantoni
  4. Julian Candia
  5. Ann Z Moore
  6. Angelique Bioancotto
  7. Birgit Schilling
  8. Stefania Bandinelli
  9. Luigi Ferrucci
  1. National Institute on Aging, NIH, United States
  2. Buck Institute for Research on Aging, United States
  3. National Cancer Institute, NIH, United States
  4. Sanofi, United States
  5. Azienda Sanitaria di Firenze, Italy

Abstract

Older age is a strong shared risk factor for many chronic diseases and there is increasing interest in identifying aging biomarkers. Here a proteomic analysis of 1301 plasma proteins was conducted in 997 individuals between 21 and 102 years of age. We identified 651 proteins associated with age (506 over-represented, 145 underrepresented with age) was identified. Mediation analysis suggested a role for partial cis-epigenetic control of protein expression with age. Of the age-associated proteins, 33.5% and 45.3%, were associated with mortality and multimorbidity, respectively. There was enrichment of proteins associated with inflammation and extracellular matrix as well as senescence-associated secretory proteins. A 76-protein proteomic age signature predicted accumulation of chronic diseases and all-cause mortality. These data support the premise of proteomic biomarkers to monitor aging trajectories and to identify individuals at higher risk for disease to be targeted for in depth diagnostic procedures and early interventions.

Data availability

Phenotypic data and source codes used for this manuscript is provided. Due to the contents of the InCHIANTI study consent forms, proteomic and DNA methylation data cannot be made publicly available. Researchers can seek access to these data through the submission of proposals and subsequent approval through the InCHIANTI study website (inchiantistudy.net).

Article and author information

Author details

  1. Toshiko Tanaka

    Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States
    For correspondence
    tanakato@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4161-3829
  2. Nathan Basisty

    Buck Institute for Research on Aging, Novato, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Giovanna Fantoni

    Clinical Research Core, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Julian Candia

    Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5793-8989
  5. Ann Z Moore

    Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Angelique Bioancotto

    Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Birgit Schilling

    Buck Institute for Research on Aging, Novato, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9907-2749
  8. Stefania Bandinelli

    Geriatric Unit, Azienda Sanitaria di Firenze, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Luigi Ferrucci

    Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6273-1613

Funding

National Institutes of Health (U01 AG060906)

  • Birgit Schilling

National Institutes of Health (K99 AG065484)

  • Nathan Basisty

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sara Hägg, Karolinska Institutet, Sweden

Ethics

Human subjects: The study protocol (exemption #11976) was approved by the Italian National Institute of Research and Care of Aging Institutional Review and Medstar Research Institute (Baltimore, MD) and approved by the Internal Review Board of the National Institute for Environmental Health Sciences (NIEHS).

Version history

  1. Received: July 15, 2020
  2. Accepted: November 16, 2020
  3. Accepted Manuscript published: November 19, 2020 (version 1)
  4. Version of Record published: December 8, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 8,781
    views
  • 1,094
    downloads
  • 92
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Toshiko Tanaka
  2. Nathan Basisty
  3. Giovanna Fantoni
  4. Julian Candia
  5. Ann Z Moore
  6. Angelique Bioancotto
  7. Birgit Schilling
  8. Stefania Bandinelli
  9. Luigi Ferrucci
(2020)
Plasma proteomic biomarker signature of age predicts health and life span
eLife 9:e61073.
https://doi.org/10.7554/eLife.61073

Share this article

https://doi.org/10.7554/eLife.61073

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.