Plasma proteomic biomarker signature of age predicts health and life span

  1. Toshiko Tanaka  Is a corresponding author
  2. Nathan Basisty
  3. Giovanna Fantoni
  4. Julian Candia
  5. Ann Z Moore
  6. Angelique Bioancotto
  7. Birgit Schilling
  8. Stefania Bandinelli
  9. Luigi Ferrucci
  1. National Institute on Aging, NIH, United States
  2. Buck Institute for Research on Aging, United States
  3. National Cancer Institute, NIH, United States
  4. Sanofi, United States
  5. Azienda Sanitaria di Firenze, Italy

Abstract

Older age is a strong shared risk factor for many chronic diseases and there is increasing interest in identifying aging biomarkers. Here a proteomic analysis of 1301 plasma proteins was conducted in 997 individuals between 21 and 102 years of age. We identified 651 proteins associated with age (506 over-represented, 145 underrepresented with age) was identified. Mediation analysis suggested a role for partial cis-epigenetic control of protein expression with age. Of the age-associated proteins, 33.5% and 45.3%, were associated with mortality and multimorbidity, respectively. There was enrichment of proteins associated with inflammation and extracellular matrix as well as senescence-associated secretory proteins. A 76-protein proteomic age signature predicted accumulation of chronic diseases and all-cause mortality. These data support the premise of proteomic biomarkers to monitor aging trajectories and to identify individuals at higher risk for disease to be targeted for in depth diagnostic procedures and early interventions.

Data availability

Phenotypic data and source codes used for this manuscript is provided. Due to the contents of the InCHIANTI study consent forms, proteomic and DNA methylation data cannot be made publicly available. Researchers can seek access to these data through the submission of proposals and subsequent approval through the InCHIANTI study website (inchiantistudy.net).

Article and author information

Author details

  1. Toshiko Tanaka

    Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States
    For correspondence
    tanakato@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4161-3829
  2. Nathan Basisty

    Buck Institute for Research on Aging, Novato, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Giovanna Fantoni

    Clinical Research Core, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Julian Candia

    Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5793-8989
  5. Ann Z Moore

    Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Angelique Bioancotto

    Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Birgit Schilling

    Buck Institute for Research on Aging, Novato, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9907-2749
  8. Stefania Bandinelli

    Geriatric Unit, Azienda Sanitaria di Firenze, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Luigi Ferrucci

    Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6273-1613

Funding

National Institutes of Health (U01 AG060906)

  • Birgit Schilling

National Institutes of Health (K99 AG065484)

  • Nathan Basisty

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sara Hägg, Karolinska Institutet, Sweden

Ethics

Human subjects: The study protocol (exemption #11976) was approved by the Italian National Institute of Research and Care of Aging Institutional Review and Medstar Research Institute (Baltimore, MD) and approved by the Internal Review Board of the National Institute for Environmental Health Sciences (NIEHS).

Version history

  1. Received: July 15, 2020
  2. Accepted: November 16, 2020
  3. Accepted Manuscript published: November 19, 2020 (version 1)
  4. Version of Record published: December 8, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 8,321
    Page views
  • 1,037
    Downloads
  • 70
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Toshiko Tanaka
  2. Nathan Basisty
  3. Giovanna Fantoni
  4. Julian Candia
  5. Ann Z Moore
  6. Angelique Bioancotto
  7. Birgit Schilling
  8. Stefania Bandinelli
  9. Luigi Ferrucci
(2020)
Plasma proteomic biomarker signature of age predicts health and life span
eLife 9:e61073.
https://doi.org/10.7554/eLife.61073

Share this article

https://doi.org/10.7554/eLife.61073

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Thomas Grandits, Christoph M Augustin ... Alexander Jung
    Research Article

    Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the present study introduces a neural network (NN) that emulates the AP for given maximum conductances of selected ion channels, pumps, and exchangers. Its applicability in pharmacological studies was tested on synthetic and experimental data. The NN emulator potentially enables massive speed-ups compared to regular simulations and the forward problem (find drugged AP for pharmacological parameters defined as scaling factors of control maximum conductances) on synthetic data could be solved with average root-mean-square errors (RMSE) of 0.47 mV in normal APs and of 14.5 mV in abnormal APs exhibiting early afterdepolarizations (72.5% of the emulated APs were alining with the abnormality, and the substantial majority of the remaining APs demonstrated pronounced proximity). This demonstrates not only very fast and mostly very accurate AP emulations but also the capability of accounting for discontinuities, a major advantage over existing emulation strategies. Furthermore, the inverse problem (find pharmacological parameters for control and drugged APs through optimization) on synthetic data could be solved with high accuracy shown by a maximum RMSE of 0.22 in the estimated pharmacological parameters. However, notable mismatches were observed between pharmacological parameters estimated from experimental data and distributions obtained from the Comprehensive in vitro Proarrhythmia Assay initiative. This reveals larger inaccuracies which can be attributed particularly to the fact that small tissue preparations were studied while the emulator was trained on single cardiomyocyte data. Overall, our study highlights the potential of NN emulators as powerful tool for an increased efficiency in future quantitative systems pharmacology studies.

    1. Computational and Systems Biology
    2. Neuroscience
    Domingos Leite de Castro, Miguel Aroso ... Paulo Aguiar
    Research Article Updated

    Closed-loop neuronal stimulation has a strong therapeutic potential for neurological disorders such as Parkinson’s disease. However, at the moment, standard stimulation protocols rely on continuous open-loop stimulation and the design of adaptive controllers is an active field of research. Delayed feedback control (DFC), a popular method used to control chaotic systems, has been proposed as a closed-loop technique for desynchronisation of neuronal populations but, so far, was only tested in computational studies. We implement DFC for the first time in neuronal populations and access its efficacy in disrupting unwanted neuronal oscillations. To analyse in detail the performance of this activity control algorithm, we used specialised in vitro platforms with high spatiotemporal monitoring/stimulating capabilities. We show that the conventional DFC in fact worsens the neuronal population oscillatory behaviour, which was never reported before. Conversely, we present an improved control algorithm, adaptive DFC (aDFC), which monitors the ongoing oscillation periodicity and self-tunes accordingly. aDFC effectively disrupts collective neuronal oscillations restoring a more physiological state. Overall, these results support aDFC as a better candidate for therapeutic closed-loop brain stimulation.