Plasma proteomic biomarker signature of age predicts health and life span

  1. Toshiko Tanaka  Is a corresponding author
  2. Nathan Basisty
  3. Giovanna Fantoni
  4. Julian Candia
  5. Ann Z Moore
  6. Angelique Bioancotto
  7. Birgit Schilling
  8. Stefania Bandinelli
  9. Luigi Ferrucci
  1. National Institute on Aging, NIH, United States
  2. Buck Institute for Research on Aging, United States
  3. National Cancer Institute, NIH, United States
  4. Sanofi, United States
  5. Azienda Sanitaria di Firenze, Italy

Abstract

Older age is a strong shared risk factor for many chronic diseases and there is increasing interest in identifying aging biomarkers. Here a proteomic analysis of 1301 plasma proteins was conducted in 997 individuals between 21 and 102 years of age. We identified 651 proteins associated with age (506 over-represented, 145 underrepresented with age) was identified. Mediation analysis suggested a role for partial cis-epigenetic control of protein expression with age. Of the age-associated proteins, 33.5% and 45.3%, were associated with mortality and multimorbidity, respectively. There was enrichment of proteins associated with inflammation and extracellular matrix as well as senescence-associated secretory proteins. A 76-protein proteomic age signature predicted accumulation of chronic diseases and all-cause mortality. These data support the premise of proteomic biomarkers to monitor aging trajectories and to identify individuals at higher risk for disease to be targeted for in depth diagnostic procedures and early interventions.

Data availability

Phenotypic data and source codes used for this manuscript is provided. Due to the contents of the InCHIANTI study consent forms, proteomic and DNA methylation data cannot be made publicly available. Researchers can seek access to these data through the submission of proposals and subsequent approval through the InCHIANTI study website (inchiantistudy.net).

Article and author information

Author details

  1. Toshiko Tanaka

    Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States
    For correspondence
    tanakato@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4161-3829
  2. Nathan Basisty

    Buck Institute for Research on Aging, Novato, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Giovanna Fantoni

    Clinical Research Core, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Julian Candia

    Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5793-8989
  5. Ann Z Moore

    Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Angelique Bioancotto

    Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Birgit Schilling

    Buck Institute for Research on Aging, Novato, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9907-2749
  8. Stefania Bandinelli

    Geriatric Unit, Azienda Sanitaria di Firenze, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Luigi Ferrucci

    Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6273-1613

Funding

National Institutes of Health (U01 AG060906)

  • Birgit Schilling

National Institutes of Health (K99 AG065484)

  • Nathan Basisty

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sara Hägg, Karolinska Institutet, Sweden

Ethics

Human subjects: The study protocol (exemption #11976) was approved by the Italian National Institute of Research and Care of Aging Institutional Review and Medstar Research Institute (Baltimore, MD) and approved by the Internal Review Board of the National Institute for Environmental Health Sciences (NIEHS).

Version history

  1. Received: July 15, 2020
  2. Accepted: November 16, 2020
  3. Accepted Manuscript published: November 19, 2020 (version 1)
  4. Version of Record published: December 8, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 8,345
    views
  • 1,041
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Toshiko Tanaka
  2. Nathan Basisty
  3. Giovanna Fantoni
  4. Julian Candia
  5. Ann Z Moore
  6. Angelique Bioancotto
  7. Birgit Schilling
  8. Stefania Bandinelli
  9. Luigi Ferrucci
(2020)
Plasma proteomic biomarker signature of age predicts health and life span
eLife 9:e61073.
https://doi.org/10.7554/eLife.61073

Share this article

https://doi.org/10.7554/eLife.61073

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.

    1. Computational and Systems Biology
    Qianmu Yuan, Chong Tian, Yuedong Yang
    Tools and Resources

    Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven’t fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.